32,551 research outputs found
Stability, effective dimensions, and interactions for bosons in deformed fields
The hyperspherical adiabatic method is used to derive stability criteria for
Bose-Einstein condensates in deformed external fields. An analytical
approximation is obtained. For constant volume the highest stability is found
for spherical traps. Analytical approximations to the stability criterion with
and without zero point motion are derived. Extreme geometries of the field
effectively confine the system to dimensions lower than three. As a function of
deformation we compute the dimension to vary continuously between one and
three. We derive a dimension-dependent effective radial Hamiltonian and
investigate one choice of an effective interaction in the deformed case.Comment: 7 pages, 5 figures, submitted to Phys. Rev. A. In version 2 figures 2
and 5 are added along with more discussions and explanations. Version 3
contains added comments and reference
Condensates and correlated boson systems
We study two-body correlations in a many-boson system with a hyperspherical
approach, where we can use arbitrary scattering length and include two-body
bound states. As a special application we look on Bose-Einstein condensation
and calculate the stability criterium in a comparison with the experimental
criterium and the theoretical criterium from the Gross-Pitaevskii equation.Comment: 6 pages, 4 figures. Contribution to Workshop on Critical Stability
III in Trento. Submitted to Few-Body System
Investigation of thermionic energy conversion final report, 9 jul. - 9 sep. 1962
Refractory ceramic oxide for thermionic diode
Scattering into Cones and Flux across Surfaces in Quantum Mechanics: a Pathwise Probabilistic Approach
We show how the scattering-into-cones and flux-across-surfaces theorems in
Quantum Mechanics have very intuitive pathwise probabilistic versions based on
some results by Carlen about large time behaviour of paths of Nelson
diffusions. The quantum mechanical results can be then recovered by taking
expectations in our pathwise statements.Comment: To appear in Journal of Mathematical Physic
Stability and structure of two coupled boson systems in an external field
The lowest adiabatic potential expressed in hyperspherical coordinates is
estimated for two boson systems in an external harmonic trap. Corresponding
conditions for stability are investigated and the related structures are
extracted for zero-range interactions. Strong repulsion between non-identical
particles leads to two new features, respectively when identical particles
attract or repel each other. For repulsion new stable structures arise with
displaced center of masses. For attraction the mean-field stability region is
restricted due to motion of the center of masses
3P_2-3F_2 pairing in neutron matter with modern nucleon-nucleon potentials
We present results for the pairing gap in neutron matter with
several realistic nucleon-nucleon potentials, in particular with recent,
phase-shift equivalent potentials. We find that their predictions for the gap
cannot be trusted at densities above , where is
the saturation density for symmetric nuclear matter. In order to make
predictions above that density, potential models which fit the nucleon-nucleon
phase shifts up to about 1 GeV are required.Comment: Revtex style, 19 pages, 6 figures inlude
- …