26 research outputs found

    Fra sameemissær via helbredelsespredikant til hvilehjemetablerer. Didrik Trulssen Solli (1904-1989)

    Get PDF
    Denne oppgaven er en biografisk framstilling av sameemissæren Didrik T. Solli. Sollis rolle som emissær var utypisk for sin samtid, og han skred til emissærgjerningen med dyp respekt og ærbødighet for det samiske. Solli fikk også tidlig evner til helbredelser, evner han brukte for å hjelpe mange med sykdom og lidelser. Til tross for mange samstemte holdninger til Sollis virke, så blir bildet noe mer nyansert når også motstemmer kommer til ordet. Med dette som bakteppe svarer oppgaven på følgende overordnede problemstilling; Hvem var Didrik Trulssen Solli? En ydmyk Herrens tjener eller en selvsentrert helbredelsespredikant? Gjennom bruken av tre ulike metoder, sikter oppgaven å belyse Sollis liv og virke fra flere innfallsvinkler; tekstanalyse, historie-kritisk metode og samtale med informanter. Utfallet av analysen er ikke entydig, men spennende. Solli trer frem som en mer sammensatt person enn først antatt

    Severity of fatigue in people with rheumatoid arthritis, psoriatic arthritis and spondyloarthritis:Results of a cross-sectional study

    Get PDF
    BACKGROUND:Despite improvements in treatment for rheumatoid arthritis (RA), psoriatic arthritis (PsA) and spondyloarthritis (axSpA), several key unmet needs remain, such as fatigue. The objective of this study was to describe the severity of fatigue, disease characteristics and socioeconomic factors in people with RA, PsA and axSpA. METHODS:The study was designed as a cross-sectional survey collecting patient characteristics such as disease characteristics, socioeconomic factors and fatigue in people with RA, PsA and axSpA in Denmark. Respondents were consecutively recruited for the study over a six-month period in 2018 via routine visits to outpatient rheumatology clinics. Study nurses collected information on diagnosis, current disease-related treatment and disease activity from medical journals. People were invited to complete a questionnaire related to socioeconomic factors and containing the FACIT-Fatigue subscale. Descriptive statistics were analyzed using SAS. RESULTS:We invited 633 people to participate, and 488 (77%) completed the questionnaire. Women constituted 62% of respondents, and the mean age was 53.5 years. Respondents had on average been diagnosed between 11 and 15 years ago. Overall, 79% had no changes to their disease-related treatment during the past year, and the average disease activity as indicated by DAS28 for RA and PsA was 2.48 and 2.36, respectively, and BASDAI for axSpA was 28.40. Fatigue was present in all three diagnoses (mean: 34.31). The mean fatigue score varied from respondents answering that they suffered from no or little fatigue (mean: 45.48) to extreme fatigue (mean: 10.11). Analyses demonstrated that the respondents were not considerably different from nonrespondents, and the study population is considered representative compared with Danish RA and axSpA patients in the Danish National Rheumatology Registry, the DANBIO database. CONCLUSION:We found that the majority of the study population were fatigued (61%). They had low disease activity and few disease-related treatment changes

    National, clinical cohort study of late effects among survivors of acute lymphoblastic leukaemia:The ALL-STAR study protocol

    Get PDF
    Introduction More than 90% of patients diagnosed with childhood acute lymphoblastic leukaemia (ALL) today will survive. However, half of the survivors are expected to experience therapy-related chronic or late occurring adverse effects, reducing quality of life. Insight into underlying risk trajectories is warranted. The aim of this study is to establish a Nordic, national childhood ALL survivor cohort, to be investigated for the total somatic and psychosocial treatment-related burden as well as associated risk factors, allowing subsequent linkage to nation-wide public health registers.Methods and analysis This population-based observational cohort study includes clinical follow-up of a retrospective childhood ALL survivor cohort (n=475), treated according to a common Nordic ALL protocol during 2008–2018 in Denmark. The study includes matched controls. Primary endpoints are the cumulative incidence and cumulative burden of 197 health conditions, assessed through self-report and proxy-report questionnaires, medical chart validation, and clinical examinations. Secondary endpoints include organ-specific outcome, including cardiovascular and pulmonary function, physical performance, neuropathy, metabolic disturbances, hepatic and pancreatic function, bone health, oral and dental health, kidney function, puberty and fertility, fatigue, and psychosocial outcome. Therapy exposure, acute toxicities, and host genome variants are explored as risk factors.Ethics and dissemination The study is approved by the Regional Ethics Committee for the Capital Region in Denmark (H-18035090/H-20006359) and by the Danish Data Protection Agency (VD-2018–519). Results will be published in peer-reviewed journals and are expected to guide interventions that will ameliorate the burden of therapy without compromising the chance of cure

    Reproductive hormones, bone mineral content, body composition, and testosterone therapy in boys and adolescents with Klinefelter syndrome

    Get PDF
    Adult patients with Klinefelter syndrome (KS) are characterized by a highly variable phenotype, including tall stature, obesity, and hypergonadotropic hypogonadism, as well as an increased risk of developing insulin resistance, metabolic syndrome, and osteoporosis. Most adults need testosterone replacement therapy (TRT), whereas the use of TRT during puberty has been debated. In this retrospective, observational study, reproductive hormones and whole-body dual-energy x-ray absorptiometry-derived body composition and bone mineral content were standardized to age-related standard deviation scores in 62 patients with KS aged 5.9–20.6 years. Serum concentrations of total testosterone and inhibin B were low, whereas luteinizing hormone and follicle-stimulating hormone were high in patients before TRT. Despite normal body mass index, body fat percentage and the ratio between android fat percentage and gynoid fat percentage were significantly higher in the entire group irrespective of tr eatment status. In patients evaluated before and during TRT, a tendency toward a more benefi cial body composition with a significant reduction in the ratio between android fat pe rcentage and gynoid fat percentage during TRT was found. Bone mineral content (BMC) did not differ from the reference, but BMC corrected for bone area was significantly low er when compared to the reference. This study confirms that patients with KS have an unf avorable body composition and an impaired bone mineral status already during childhood and adolescence. Systematic studies are needed to evaluate whether TRT during puberty will improve these parameters

    Effect of Sleep Disturbance Symptoms on Treatment Outcome in Blended Cognitive Behavioral Therapy for Depression (E-COMPARED Study): Secondary Analysis.

    Get PDF
    BACKGROUND: Sleep disturbance symptoms are common in major depressive disorder (MDD) and have been found to hamper the treatment effect of conventional face-to-face psychological treatments such as cognitive behavioral therapy. To increase the dissemination of evidence-based treatment, blended cognitive behavioral therapy (bCBT) consisting of web-based and face-to-face treatment is on the rise for patients with MDD. To date, no study has examined whether sleep disturbance symptoms have an impact on bCBT treatment outcomes and whether it affects bCBT and treatment-as-usual (TAU) equally. OBJECTIVE: The objectives of this study are to investigate whether baseline sleep disturbance symptoms have an impact on treatment outcomes independent of treatment modality and whether sleep disturbance symptoms impact bCBT and TAU in routine care equally. METHODS: The study was based on data from the E-COMPARED (European Comparative Effectiveness Research on Blended Depression Treatment Versus Treatment-as-Usual) study, a 2-arm, multisite, parallel randomized controlled, noninferiority trial. A total of 943 outpatients with MDD were randomized to either bCBT (476/943, 50.5%) or TAU consisting of routine clinical MDD treatment (467/943, 49.5%). The primary outcome of this study was the change in depression symptom severity at the 12-month follow-up. The secondary outcomes were the change in depression symptom severity at the 3- and 6-month follow-up and MDD diagnoses at the 12-month follow-up, assessed using the Patient Health Questionnaire-9 and Mini-International Neuropsychiatric Interview, respectively. Mixed effects models were used to examine the association of sleep disturbance symptoms with treatment outcome and treatment modality over time. RESULTS: Of the 943 patients recruited for the study, 558 (59.2%) completed the 12-month follow-up assessment. In the total sample, baseline sleep disturbance symptoms did not significantly affect change in depressive symptom severity at the 12-month follow-up (β=.16, 95% CI -0.04 to 0.36). However, baseline sleep disturbance symptoms were negatively associated with treatment outcome for bCBT (β=.49, 95% CI 0.22-0.76) but not for TAU (β=-.23, 95% CI -0.50 to 0.05) at the 12-month follow-up, even when adjusting for baseline depression symptom severity. The same result was seen for the effect of sleep disturbance symptoms on the presence of depression measured with Mini-International Neuropsychiatric Interview at the 12-month follow-up. However, for both treatment formats, baseline sleep disturbance symptoms were not associated with depression symptom severity at either the 3- (β=.06, 95% CI -0.11 to 0.23) or 6-month (β=.09, 95% CI -0.10 to 0.28) follow-up. CONCLUSIONS: Baseline sleep disturbance symptoms may have a negative impact on long-term treatment outcomes in bCBT for MDD. This effect was not observed for TAU. These findings suggest that special attention to sleep disturbance symptoms might be warranted when MDD is treated with bCBT. Future studies should investigate the effect of implementing modules specifically targeting sleep disturbance symptoms in bCBT for MDD to improve long-term prognosis

    Detailed stratified GWAS analysis for severe COVID-19 in four European populations

    Get PDF
    Given the highly variable clinical phenotype of Coronavirus disease 2019 (COVID-19), a deeper analysis of the host genetic contribution to severe COVID-19 is important to improve our understanding of underlying disease mechanisms. Here, we describe an extended genome-wide association meta-analysis of a well-characterized cohort of 3255 COVID-19 patients with respiratory failure and 12 488 population controls from Italy, Spain, Norway and Germany/Austria, including stratified analyses based on age, sex and disease severity, as well as targeted analyses of chromosome Y haplotypes, the human leukocyte antigen region and the SARS-CoV-2 peptidome. By inversion imputation, we traced a reported association at 17q21.31 to a ~0.9-Mb inversion polymorphism that creates two highly differentiated haplotypes and characterized the potential effects of the inversion in detail. Our data, together with the 5th release of summary statistics from the COVID-19 Host Genetics Initiative including non-Caucasian individuals, also identified a new locus at 19q13.33, including NAPSA, a gene which is expressed primarily in alveolar cells responsible for gas exchange in the lung.S.E.H. and C.A.S. partially supported genotyping through a philanthropic donation. A.F. and D.E. were supported by a grant from the German Federal Ministry of Education and COVID-19 grant Research (BMBF; ID:01KI20197); A.F., D.E. and F.D. were supported by the Deutsche Forschungsgemeinschaft Cluster of Excellence ‘Precision Medicine in Chronic Inflammation’ (EXC2167). D.E. was supported by the German Federal Ministry of Education and Research (BMBF) within the framework of the Computational Life Sciences funding concept (CompLS grant 031L0165). D.E., K.B. and S.B. acknowledge the Novo Nordisk Foundation (NNF14CC0001 and NNF17OC0027594). T.L.L., A.T. and O.Ö. were funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), project numbers 279645989; 433116033; 437857095. M.W. and H.E. are supported by the German Research Foundation (DFG) through the Research Training Group 1743, ‘Genes, Environment and Inflammation’. L.V. received funding from: Ricerca Finalizzata Ministero della Salute (RF-2016-02364358), Italian Ministry of Health ‘CV PREVITAL’—strategie di prevenzione primaria cardiovascolare primaria nella popolazione italiana; The European Union (EU) Programme Horizon 2020 (under grant agreement No. 777377) for the project LITMUS- and for the project ‘REVEAL’; Fondazione IRCCS Ca’ Granda ‘Ricerca corrente’, Fondazione Sviluppo Ca’ Granda ‘Liver-BIBLE’ (PR-0391), Fondazione IRCCS Ca’ Granda ‘5permille’ ‘COVID-19 Biobank’ (RC100017A). A.B. was supported by a grant from Fondazione Cariplo to Fondazione Tettamanti: ‘Bio-banking of Covid-19 patient samples to support national and international research (Covid-Bank). This research was partly funded by an MIUR grant to the Department of Medical Sciences, under the program ‘Dipartimenti di Eccellenza 2018–2022’. This study makes use of data generated by the GCAT-Genomes for Life. Cohort study of the Genomes of Catalonia, Fundació IGTP (The Institute for Health Science Research Germans Trias i Pujol) IGTP is part of the CERCA Program/Generalitat de Catalunya. GCAT is supported by Acción de Dinamización del ISCIII-MINECO and the Ministry of Health of the Generalitat of Catalunya (ADE 10/00026); the Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) (2017-SGR 529). M.M. received research funding from grant PI19/00335 Acción Estratégica en Salud, integrated in the Spanish National RDI Plan and financed by ISCIII-Subdirección General de Evaluación and the Fondo Europeo de Desarrollo Regional (European Regional Development Fund (FEDER)-Una manera de hacer Europa’). B.C. is supported by national grants PI18/01512. X.F. is supported by the VEIS project (001-P-001647) (co-funded by the European Regional Development Fund (ERDF), ‘A way to build Europe’). Additional data included in this study were obtained in part by the COVICAT Study Group (Cohort Covid de Catalunya) supported by IsGlobal and IGTP, European Institute of Innovation & Technology (EIT), a body of the European Union, COVID-19 Rapid Response activity 73A and SR20-01024 La Caixa Foundation. A.J. and S.M. were supported by the Spanish Ministry of Economy and Competitiveness (grant numbers: PSE-010000-2006-6 and IPT-010000-2010-36). A.J. was also supported by national grant PI17/00019 from the Acción Estratégica en Salud (ISCIII) and the European Regional Development Fund (FEDER). The Basque Biobank, a hospital-related platform that also involves all Osakidetza health centres, the Basque government’s Department of Health and Onkologikoa, is operated by the Basque Foundation for Health Innovation and Research-BIOEF. M.C. received Grants BFU2016-77244-R and PID2019-107836RB-I00 funded by the Agencia Estatal de Investigación (AEI, Spain) and the European Regional Development Fund (FEDER, EU). M.R.G., J.A.H., R.G.D. and D.M.M. are supported by the ‘Spanish Ministry of Economy, Innovation and Competition, the Instituto de Salud Carlos III’ (PI19/01404, PI16/01842, PI19/00589, PI17/00535 and GLD19/00100) and by the Andalussian government (Proyectos Estratégicos-Fondos Feder PE-0451-2018, COVID-Premed, COVID GWAs). The position held by Itziar de Rojas Salarich is funded by grant FI20/00215, PFIS Contratos Predoctorales de Formación en Investigación en Salud. Enrique Calderón’s team is supported by CIBER of Epidemiology and Public Health (CIBERESP), ‘Instituto de Salud Carlos III’. J.C.H. reports grants from Research Council of Norway grant no 312780 during the conduct of the study. E.S. reports grants from Research Council of Norway grant no. 312769. The BioMaterialBank Nord is supported by the German Center for Lung Research (DZL), Airway Research Center North (ARCN). The BioMaterialBank Nord is member of popgen 2.0 network (P2N). P.K. Bergisch Gladbach, Germany and the Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany. He is supported by the German Federal Ministry of Education and Research (BMBF). O.A.C. is supported by the German Federal Ministry of Research and Education and is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy—CECAD, EXC 2030–390661388. The COMRI cohort is funded by Technical University of Munich, Munich, Germany. This work was supported by grants of the Rolf M. Schwiete Stiftung, the Saarland University, BMBF and The States of Saarland and Lower Saxony. K.U.L. is supported by the German Research Foundation (DFG, LU-1944/3-1). Genotyping for the BoSCO study is funded by the Institute of Human Genetics, University Hospital Bonn. F.H. was supported by the Bavarian State Ministry for Science and Arts. Part of the genotyping was supported by a grant to A.R. from the German Federal Ministry of Education and Research (BMBF, grant: 01ED1619A, European Alzheimer DNA BioBank, EADB) within the context of the EU Joint Programme—Neurodegenerative Disease Research (JPND). Additional funding was derived from the German Research Foundation (DFG) grant: RA 1971/6-1 to A.R. P.R. is supported by the DFG (CCGA Sequencing Centre and DFG ExC2167 PMI and by SH state funds for COVID19 research). F.T. is supported by the Clinician Scientist Program of the Deutsche Forschungsgemeinschaft Cluster of Excellence ‘Precision Medicine in Chronic Inflammation’ (EXC2167). C.L. and J.H. are supported by the German Center for Infection Research (DZIF). T.B., M.M.B., O.W. und A.H. are supported by the Stiftung Universitätsmedizin Essen. M.A.-H. was supported by Juan de la Cierva Incorporacion program, grant IJC2018-035131-I funded by MCIN/AEI/10.13039/501100011033. E.C.S. is supported by the Deutsche Forschungsgemeinschaft (DFG; SCHU 2419/2-1).Peer reviewe

    Detailed stratified GWAS analysis for severe COVID-19 in four European populations

    Get PDF
    Given the highly variable clinical phenotype of Coronavirus disease 2019 (COVID-19), a deeper analysis of the host genetic contribution to severe COVID-19 is important to improve our understanding of underlying disease mechanisms. Here, we describe an extended GWAS meta-analysis of a well-characterized cohort of 3,260 COVID-19 patients with respiratory failure and 12,483 population controls from Italy, Spain, Norway and Germany/Austria, including stratified analyses based on age, sex and disease severity, as well as targeted analyses of chromosome Y haplotypes, the human leukocyte antigen (HLA) region and the SARS-CoV-2 peptidome. By inversion imputation, we traced a reported association at 17q21.31 to a highly pleiotropic ∼0.9-Mb inversion polymorphism and characterized the potential effects of the inversion in detail. Our data, together with the 5th release of summary statistics from the COVID-19 Host Genetics Initiative, also identified a new locus at 19q13.33, including NAPSA, a gene which is expressed primarily in alveolar cells responsible for gas exchange in the lung.Andre Franke and David Ellinghaus were supported by a grant from the German Federal Ministry of Education and Research (01KI20197), Andre Franke, David Ellinghaus and Frauke Degenhardt were supported by the Deutsche Forschungsgemeinschaft Cluster of Excellence “Precision Medicine in Chronic Inflammation” (EXC2167). David Ellinghaus was supported by the German Federal Ministry of Education and Research (BMBF) within the framework of the Computational Life Sciences funding concept (CompLS grant 031L0165). David Ellinghaus, Karina Banasik and Søren Brunak acknowledge the Novo Nordisk Foundation (grant NNF14CC0001 and NNF17OC0027594). Tobias L. Lenz, Ana Teles and Onur Özer were funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), project numbers 279645989; 433116033; 437857095. Mareike Wendorff and Hesham ElAbd are supported by the German Research Foundation (DFG) through the Research Training Group 1743, "Genes, Environment and Inflammation". This project was supported by a Covid-19 grant from the German Federal Ministry of Education and Research (BMBF; ID: 01KI20197). Luca Valenti received funding from: Ricerca Finalizzata Ministero della Salute RF2016-02364358, Italian Ministry of Health ""CV PREVITAL – strategie di prevenzione primaria cardiovascolare primaria nella popolazione italiana; The European Union (EU) Programme Horizon 2020 (under grant agreement No. 777377) for the project LITMUS- and for the project ""REVEAL""; Fondazione IRCCS Ca' Granda ""Ricerca corrente"", Fondazione Sviluppo Ca' Granda ""Liver-BIBLE"" (PR-0391), Fondazione IRCCS Ca' Granda ""5permille"" ""COVID-19 Biobank"" (RC100017A). Andrea Biondi was supported by the grant from Fondazione Cariplo to Fondazione Tettamanti: "Biobanking of Covid-19 patient samples to support national and international research (Covid-Bank). This research was partly funded by a MIUR grant to the Department of Medical Sciences, under the program "Dipartimenti di Eccellenza 2018–2022". This study makes use of data generated by the GCAT-Genomes for Life. Cohort study of the Genomes of Catalonia, Fundació IGTP. IGTP is part of the CERCA Program / Generalitat de Catalunya. GCAT is supported by Acción de Dinamización del ISCIIIMINECO and the Ministry of Health of the Generalitat of Catalunya (ADE 10/00026); the Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) (2017-SGR 529). Marta Marquié received research funding from ant PI19/00335 Acción Estratégica en Salud, integrated in the Spanish National RDI Plan and financed by ISCIIISubdirección General de Evaluación and the Fondo Europeo de Desarrollo Regional (FEDER-Una manera de hacer Europa").Beatriz Cortes is supported by national grants PI18/01512. Xavier Farre is supported by VEIS project (001-P-001647) (cofunded by European Regional Development Fund (ERDF), “A way to build Europe”). Additional data included in this study was obtained in part by the COVICAT Study Group (Cohort Covid de Catalunya) supported by IsGlobal and IGTP, EIT COVID-19 Rapid Response activity 73A and SR20-01024 La Caixa Foundation. Antonio Julià and Sara Marsal were supported by the Spanish Ministry of Economy and Competitiveness (grant numbers: PSE-010000-2006-6 and IPT-010000-2010-36). Antonio Julià was also supported the by national grant PI17/00019 from the Acción Estratégica en Salud (ISCIII) and the FEDER. The Basque Biobank is a hospitalrelated platform that also involves all Osakidetza health centres, the Basque government's Department of Health and Onkologikoa, is operated by the Basque Foundation for Health Innovation and Research-BIOEF. Mario Cáceres received Grants BFU2016-77244-R and PID2019-107836RB-I00 funded by the Agencia Estatal de Investigación (AEI, Spain) and the European Regional Development Fund (FEDER, EU). Manuel Romero Gómez, Javier Ampuero Herrojo, Rocío Gallego Durán and Douglas Maya Miles are supported by the “Spanish Ministry of Economy, Innovation and Competition, the Instituto de Salud Carlos III” (PI19/01404, PI16/01842, PI19/00589, PI17/00535 and GLD19/00100), and by the Andalussian government (Proyectos Estratégicos-Fondos Feder PE-0451-2018, COVID-Premed, COVID GWAs). The position held by Itziar de Rojas Salarich is funded by grant FI20/00215, PFIS Contratos Predoctorales de Formación en Investigación en Salud. Enrique Calderón's team is supported by CIBER of Epidemiology and Public Health (CIBERESP), "Instituto de Salud Carlos III". Jan Cato Holter reports grants from Research Council of Norway grant no 312780 during the conduct of the study. Dr. Solligård: reports grants from Research Council of Norway grant no 312769. The BioMaterialBank Nord is supported by the German Center for Lung Research (DZL), Airway Research Center North (ARCN). The BioMaterialBank Nord is member of popgen 2.0 network (P2N). Philipp Koehler has received non-financial scientific grants from Miltenyi Biotec GmbH, Bergisch Gladbach, Germany, and the Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany. He is supported by the German Federal Ministry of Education and Research (BMBF).Oliver A. Cornely is supported by the German Federal Ministry of Research and Education and is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy – CECAD, EXC 2030 – 390661388. The COMRI cohort is funded by Technical University of Munich, Munich, Germany. Genotyping was performed by the Genotyping laboratory of Institute for Molecular Medicine Finland FIMM Technology Centre, University of Helsinki. This work was supported by grants of the Rolf M. Schwiete Stiftung, the Saarland University, BMBF and The States of Saarland and Lower Saxony. Kerstin U. Ludwig is supported by the German Research Foundation (DFG, LU-1944/3-1). Genotyping for the BoSCO study is funded by the Institute of Human Genetics, University Hospital Bonn. Frank Hanses was supported by the Bavarian State Ministry for Science and Arts. Part of the genotyping was supported by a grant to Alfredo Ramirez from the German Federal Ministry of Education and Research (BMBF, grant: 01ED1619A, European Alzheimer DNA BioBank, EADB) within the context of the EU Joint Programme – Neurodegenerative Disease Research (JPND). Additional funding was derived from the German Research Foundation (DFG) grant: RA 1971/6-1 to Alfredo Ramirez. Philip Rosenstiel is supported by the DFG (CCGA Sequencing Centre and DFG ExC2167 PMI and by SH state funds for COVID19 research). Florian Tran is supported by the Clinician Scientist Program of the Deutsche Forschungsgemeinschaft Cluster of Excellence “Precision Medicine in Chronic Inflammation” (EXC2167). Christoph Lange and Jan Heyckendorf are supported by the German Center for Infection Research (DZIF). Thorsen Brenner, Marc M Berger, Oliver Witzke und Anke Hinney are supported by the Stiftung Universitätsmedizin Essen. Marialbert Acosta-Herrera was supported by Juan de la Cierva Incorporacion program, grant IJC2018-035131-I funded by MCIN/AEI/10.13039/501100011033. Eva C Schulte is supported by the Deutsche Forschungsgemeinschaft (DFG; SCHU 2419/2-1).N
    corecore