37 research outputs found

    Linear interpolation method in ensemble Kohn-Sham and range-separated density-functional approximations for excited states

    Get PDF
    Gross-Oliveira-Kohn density functional theory (GOK-DFT) for ensembles is in principle very attractive, but has been hard to use in practice. A novel, practical model based on GOK-DFT for the calculation of electronic excitation energies is discussed. The new model relies on two modifications of GOK-DFT: use of range separation and use of the slope of the linearly-interpolated ensemble energy, rather than orbital energies. The range-separated approach is appealing as it enables the rigorous formulation of a multi-determinant state-averaged DFT method. In the exact theory, the short-range density functional, that complements the long-range wavefunction-based ensemble energy contribution, should vary with the ensemble weights even when the density is held fixed. This weight dependence ensures that the range-separated ensemble energy varies linearly with the ensemble weights. When the (weight-independent) ground-state short-range exchange-correlation functional is used in this context, curvature appears thus leading to an approximate weight-dependent excitation energy. In order to obtain unambiguous approximate excitation energies, we propose to interpolate linearly the ensemble energy between equiensembles. It is shown that such a linear interpolation method (LIM) can be rationalized and that it effectively introduces weight dependence effects. As proof of principle, LIM has been applied to He, Be, H2_2 in both equilibrium and stretched geometries as well as the stretched HeH+^+ molecule. Very promising results have been obtained for both single (including charge transfer) and double excitations with spin-independent short-range local and semi-local functionals. Even at the Kohn--Sham ensemble DFT level, that is recovered when the range-separation parameter is set to zero, LIM performs better than standard time-dependent DFT.Comment: 26 pages, 8 figure

    Alternative separation of exchange and correlation energies in range-separated density-functional perturbation theory

    Full text link
    An alternative separation of short-range exchange and correlation energies is used in the framework of second-order range-separated density-functional perturbation theory. This alternative separation was initially proposed by Toulouse et al. [Theor. Chem. Acc. 114, 305 (2005)] and relies on a long-range interacting wavefunction instead of the non-interacting Kohn-Sham one. When second-order corrections to the density are neglected, the energy expression reduces to a range-separated double-hybrid (RSDH) type of functional, RSDHf, where "f" stands for "full-range integrals" as the regular full-range interaction appears explicitly in the energy expression when expanded in perturbation theory. In contrast to usual RSDH functionals, RSDHf describes the coupling between long- and short-range correlations as an orbital-dependent contribution. Calculations on the first four noble-gas dimers show that this coupling has a significant effect on the potential energy curves in the equilibrium region, improving the accuracy of binding energies and equilibrium bond distances when second-order perturbation theory is appropriate.Comment: 5 figure

    Exploration of H2 binding to the [NiFe]-hydrogenase active site with multiconfigurational density functional theory

    Get PDF
    The combination of density functional theory (DFT) with a multiconfigurational wave function is an efficient way to include dynamical correlation in calculations with multiconfiguration self-consistent field wave functions. These methods can potentially be employed to elucidate reaction mechanisms in bio-inorganic chemistry, where many other methods become either too computationally expensive or too inaccurate. In this paper, a complete active space (CAS) short-range DFT (CAS-srDFT) hybrid was employed to investigate a bio-inorganic system, namely H2 binding to the active site of [NiFe] hydrogenase. This system was previously investigated with coupled-cluster (CC) and multiconfigurational methods in form of cumulant-approximated second-order perturbation theory, based on the density matrix renormalization group (DMRG). We find that it is more favorable for H2 to bind to Ni than to Fe, in agreement with previous CC and DMRG calculations. The accuracy of CAS-srDFT is comparable to both CC and DMRG, despite that much smaller active spaces were employed. This enhanced efficiency at smaller active spaces shows that CAS-srDFT can become a useful method for bio-inorganic chemistry.Comment: 22 page

    Implementation of relativistic coupled cluster theory for massively parallel GPU-accelerated computing architectures

    Get PDF
    In this paper, we report a reimplementation of the core algorithms of relativistic coupled cluster theory aimed at modern heterogeneous high-performance computational infrastructures. The code is designed for efficient parallel execution on many compute nodes with optional GPU coprocessing, accomplished via the new ExaTENSOR back end. The resulting ExaCorr module is primarily intended for calculations of molecules with one or more heavy elements, as relativistic effects on electronic structure are included from the outset. In the current work, we thereby focus on exact 2-component methods and demonstrate the accuracy and performance of the software. The module can be used as a stand-alone program requiring a set of molecular orbital coefficients as starting point, but is also interfaced to the DIRAC program that can be used to generate these. We therefore also briefly discuss an improvement of the parallel computing aspects of the relativistic self-consistent field algorithm of the DIRAC program

    Investigation of Multiconfigurational Short-Range Density Functional Theory for Electronic Excitations in Organic Molecules

    No full text
    Computational methods that can accurately and effectively predict all types of electronic excitations for any molecular system are missing in the toolbox of the computational chemist. Although various Kohn–Sham density-functional methods (KS-DFT) fulfill this aim in some cases, they become inadequate when the molecule has near-degeneracies and/or low-lying double-excited states. To address these issues we have recently proposed multiconfiguration short-range density-functional theoryMC-srDFTas a new tool in the toolbox. While initial applications for systems with multireference character and double excitations have been promising, it is nevertheless important that the accuracy of MC-srDFT is at least comparable to the best KS-DFT methods also for organic molecules that are typically of single-reference character. In this paper we therefore systematically investigate the performance of MC-srDFT for a selected benchmark set of electronic excitations of organic molecules, covering the most common types of organic chromophores. This investigation confirms the expectation that the MC-srDFT method is accurate for a broad range of excitations and comparable to accurate wave function methods such as CASPT2, NEVPT2, and the coupled cluster based CC2 and CC3

    Excitation Spectra of Nucleobases with Multiconfigurational Density Functional Theory

    No full text
    Range-separated hybrid methods between wave function theory and density functional theory (DFT) can provide high-accuracy results, while correcting some of the inherent flaws of both the underlying wave function theory and DFT. We here assess the accuracy for excitation energies of the nucleobases thymine, uracil, cytosine, and adenine, using a hybrid between complete active space self-consistent field (CASSCF) and DFT methods. The method is based on range separation, thereby avoiding all double-counting of electron correlation and is denoted long-range CASSCF short-range DFT (CAS-srDFT). Using a linear response extension of CAS-srDFT, we compare the first 7–8 excited states of the nucleobases with perturbative multireference approaches as well as coupled cluster based methods. Our results show that the CAS-srDFT method can provide accurate excitation energies in good correspondence with the computationally more expensive methods
    corecore