57,076 research outputs found
The Infati Data
The ability to perform meaningful empirical studies is of essence in research
in spatio-temporal query processing. Such studies are often necessary to gain
detailed insight into the functional and performance characteristics of
proposals for new query processing techniques.
We present a collection of spatio-temporal data, collected during an
intelligent speed adaptation project, termed INFATI, in which some two dozen
cars equipped with GPS receivers and logging equipment took part. We describe
how the data was collected and how it was "modified" to afford the drivers some
degree of anonymity.
We also present the road network in which the cars were moving during data
collection.
The GPS data is publicly available for non-commercial purposes. It is our
hope that this resource will help the spatio-temporal research community in its
efforts to develop new and better query processing techniques
Efficient Charge Separation in 2D Janus van der Waals Structures with Build-in Electric Fields and Intrinsic p-n Doping
Janus MoSSe monolayers were recently synthesised by replacing S by Se on one
side of MoS (or vice versa for MoSe). Due to the different
electronegativity of S and Se these structures carry a finite out-of-plane
dipole moment. As we show here by means of density functional theory (DFT)
calculations, this intrinsic dipole leads to the formation of built-in electric
fields when the monolayers are stacked to form -layer structures. For
sufficiently thin structures () the dipoles add up and shift the vacuum
level on the two sides of the film by eV. However, for
thicker films charge transfer occurs between the outermost layers forming
atomically thin n- and p-doped electron gasses at the two surfaces. The doping
concentration can be tuned between about e/cm and
e/cm by varying the film thickness. The surface charges
counteract the static dipoles leading to saturation of the vacuum level shift
at around 2.2 eV for . Based on band structure calculations and the
Mott-Wannier exciton model, we compute the energies of intra- and interlayer
excitons as a function of film thickness suggesting that the Janus multilayer
films are ideally suited for achieving ultrafast charge separation over atomic
length scales without chemical doping or applied electric fields. Finally, we
explore a number of other potentially synthesisable 2D Janus structures with
different band gaps and internal dipole moments. Our results open new
opportunities for ultrathin opto-electronic components such as tunnel diodes,
photo-detectors, or solar cells
Loci Controlling Resistance to High Plains Virus and Wheat Streak Mosaic Virus in a B73 × Mo17 Population of Maize
High Plains disease has the potential to cause significant yield loss in susceptible corn (Zea mays L.) and wheat (Triticum aestivum L.) genotypes, especially in the central and western USA. The primary causal agent, High Plains virus (HPV), is vectored by wheat curl mite (WCM; Aceria tossicheila Keifer), which is also the vector of wheat streak mosaic virus (WSMV). In general, the two diseases occur together as a mixed infection in the field. The objective of this research was to characterize the inheritance of HPV and WSMV resistance using B73 (resistant to HPV and WSMV) × Mo17 (moderately susceptible to HPV and WSMV) recombinant inbred lines. A population of 129 recombinant inbred lines scored for 167 molecular markers was used to evaluate resistance to WSMV and to a mixed infection of WSMV and HPV. Loci conferring resistance to systemic movement of WSMV in plants mapped to chromosomes 3, 6, and 10, consistent with the map position of wsm2, wsm1, and wsm3, respectively. Major genes for resistance to systemic spread of HPV in doubly infected plants mapped to chromosomes 3 and 6, coincident or tightly linked with the WSMV resistance loci. Analysis of doubly infected plants revealed that chromosome 6 had a major effect on HPV resistance, consistent with our previous analysis of B73 × W64A and B73 × Wf9 populations. Quantitative trait loci (QTL) affecting resistance to localized symptom development mapped to chromosomes 4 (umc66), 5 (bnl5.40), and 6 (umc85), and accounted for 24% of the phenotypic variation. Localized symptoms may reflect the amount of mite feeding or the extent of virus spread at the point of infection. Identification of cosegregating markers may facilitate selection for HPV and WSMV resistance in corn breeding programs
Phonon-induced quadrupolar ordering of the magnetic superconductor TmNiBC
We present synchrotron x-ray diffraction studies revealing that the lattice
of thulium borocarbide is distorted below T_Q = 13.5 K at zero field. T_Q
increases and the amplitude of the displacements is drastically enhanced, by a
factor of 10 at 60 kOe, when a magnetic field is applied along [100]. The
distortion occurs at the same wave vector as the antiferromagnetic ordering
induced by the a-axis field. A model is presented that accounts for the
properties of the quadrupolar phase and explains the peculiar behavior of the
antiferromagnetic ordering previously observed in this compound.Comment: submitted to PR
LOX/Hydrocarbon Combustion Instability Investigation
The LOX/Hydrocarbon Combustion Instability Investigation Program was structured to determine if the use of light hydrocarbon combustion fuels with liquid oxygen (LOX) produces combustion performance and stability behavior similar to the LOX/hydrogen propellant combination. In particular methane was investigated to determine if that fuel can be rated for combustion instability using the same techniques as previously used for LOX/hydrogen. These techniques included fuel temperature ramping and stability bomb tests. The hot fire program probed the combustion behavior of methane from ambient to subambient temperatures. Very interesting results were obtained from this program that have potential importance to future LOX/methane development programs. A very thorough and carefully reasoned documentation of the experimental data obtained is contained. The hot fire test logic and the associated tests are discussed. Subscale performance and stability rating testing was accomplished using 40,000 lb. thrust class hardware. Stability rating tests used both bombs and fuel temperature ramping techniques. The test program was successful in generating data for the evaluation of the methane stability characteristics relative to hydrogen and to anchor stability models. Data correlations, performance analysis, stability analyses, and key stability margin enhancement parameters are discussed
Honeycomb lattice polygons and walks as a test of series analysis techniques
We have calculated long series expansions for self-avoiding walks and
polygons on the honeycomb lattice, including series for metric properties such
as mean-squared radius of gyration as well as series for moments of the
area-distribution for polygons. Analysis of the series yields accurate
estimates for the connective constant, critical exponents and amplitudes of
honeycomb self-avoiding walks and polygons. The results from the numerical
analysis agree to a high degree of accuracy with theoretical predictions for
these quantities.Comment: 16 pages, 9 figures, jpconf style files. Presented at the conference
"Counting Complexity: An international workshop on statistical mechanics and
combinatorics." In celebration of Prof. Tony Guttmann's 60th birthda
Hall noise and transverse freezing in driven vortex lattices
We study driven vortices lattices in superconducting thin films. Above the
critical force we find two dynamical phase transitions at and
, which could be observed in simultaneous noise measurements of the
longitudinal and the Hall voltage. At there is a transition from plastic
flow to smectic flow where the voltage noise is isotropic (Hall noise =
longitudinal noise) and there is a peak in the differential resistance. At
there is a sharp transition to a frozen transverse solid where the Hall
noise falls down abruptly and vortex motion is localized in the transverse
direction.Comment: 4 pages, 3 figure
Three-body structure of low-lying 12Be states
We investigate to what extent a description of 12Be as a three-body system
made of an inert 10Be-core and two neutrons is able to reproduce the
experimental 12Be data. Three-body wave functions are obtained with the
hyperspherical adiabatic expansion method. We study the discrete spectrum of
12Be, the structure of the different states, the predominant transition
strengths, and the continuum energy spectrum after high energy fragmentation on
a light target. Two 0+, one 2+, one 1- and one 0- bound states are found where
the first four are known experimentally whereas the 0- is predicted as an
isomeric state. An effective neutron charge, reproducing the measured B(E1)
transition and the charge rms radius in 11Be, leads to a computed B(E1)
transition strength for 12Be in agreement with the experimental value. For the
E0 and E2 transitions the contributions from core excitations could be more
significant. The experimental 10Be-neutron continuum energy spectrum is also
well reproduced except in the energy region corresponding to the 3/2- resonance
in 11Be where core excitations contribute.Comment: 16 pages, 9 figures. Accepted for publication in Physical Review
- …