We investigate to what extent a description of 12Be as a three-body system
made of an inert 10Be-core and two neutrons is able to reproduce the
experimental 12Be data. Three-body wave functions are obtained with the
hyperspherical adiabatic expansion method. We study the discrete spectrum of
12Be, the structure of the different states, the predominant transition
strengths, and the continuum energy spectrum after high energy fragmentation on
a light target. Two 0+, one 2+, one 1- and one 0- bound states are found where
the first four are known experimentally whereas the 0- is predicted as an
isomeric state. An effective neutron charge, reproducing the measured B(E1)
transition and the charge rms radius in 11Be, leads to a computed B(E1)
transition strength for 12Be in agreement with the experimental value. For the
E0 and E2 transitions the contributions from core excitations could be more
significant. The experimental 10Be-neutron continuum energy spectrum is also
well reproduced except in the energy region corresponding to the 3/2- resonance
in 11Be where core excitations contribute.Comment: 16 pages, 9 figures. Accepted for publication in Physical Review