550 research outputs found

    Prenatal human skin expresses the antimicrobial peptide RNase 7

    Get PDF
    Antimicrobial peptides and proteins (AMPs) play important roles in skin immune defense due to their capacity to inhibit growth of microbes. During intrauterine life, the skin immune system has to acquire the prerequisites to protect the newborn from infection in the hostile environment after birth, which includes the production of skin AMPs. The aim of this study was to analyze the expression of RNase 7, HBD-2/3 and psoriasin during human skin development, thus, providing a deeper insight about the maturity of a fundamental component of the innate immune system. We found low RNase 7 expression levels in the periderm but no expression of HBD-2/3 and psoriasin in first trimester human skin using immunohistochemistry. At the end of the second trimester, RNase 7 is expressed weakly in all epidermal layers with a marked signal in the stratum corneum. HBD-3 and psoriasin are focally expressed while HBD-2 is not detectable. Analysis of supernatants from cultured prenatal skin cells showed that in contrast to adult control, RNase 7 and psoriasin are not found in prenatal skin, suggesting that AMPs are detectable but are not secreted. This study shows the differential expression of AMPs in developing, non-perturbed human prenatal skin. It is conceivable that the combined expression of RNase 7, HBD-3 and psoriasin in fetal skin constitutes a developmental program to exert a broad spectrum of antimicrobial activity to maintain sterility in the amniotic cavity

    Socioeconomic position and SARS-CoV-2 infections: seroepidemiological findings from a German nationwide dynamic cohort

    Get PDF
    Background Evidence on the relationship between socioeconomic position (SEP) and infections with SARS-CoV-2 is still limited as most of the available studies are ecological in nature. This is the first German nationwide study to examine differences in the risk of SARS-CoV-2 infections according to SEP at the individual level. Methods The ‘CORONA-MONITORING bundesweit’ (RKI-SOEP) study is a seroepidemiological survey among a dynamic cohort of the German adult population (n=15 122; October 2020–February 2021). Dried blood samples were tested for SARS-CoV-2 antibodies and oral-nasal swabs for viral RNA. SEP was measured by education and income. Robust logistic regression was used to examine adjusted associations of SARS-CoV-2 infections with SEP. Results 288 participants were seropositive, PCR positive or self-reported a previous laboratory-confirmed SARS-CoV-2 infection. The adjusted odds of SARS-CoV-2 infection were 1.87-fold (95% CI 1.06 to 3.29) higher among low-educated than highly educated adults. Evidence was weaker for income differences in infections (OR=1.65; 95% CI 0.89 to 3.05). Highly educated adults had lower odds of undetected infection. Conclusion The results indicate an increased risk of SARS-CoV-2 infection in low-educated groups. To promote health equity in the pandemic and beyond, social determinants should be addressed more in infection protection and pandemic planning

    Co-Regulation and Interdependence of the Mammalian Epidermal Permeability and Antimicrobial Barriers

    Get PDF
    Human epidermis elaborates two small cationic, highly hydrophobic antimicrobial peptides (AMP), β-defensin 2 (hBD2), and the carboxypeptide cleavage product of human cathelicidin (hCAP18), LL-37, which are co-packaged along with lipids within epidermal lamellar bodies (LBs) before their secretion. Because of their colocalization, we hypothesized that AMP and barrier lipid production could be coregulated by altered permeability barrier requirements. mRNA and immunostainable protein levels for mBD3 and cathelin-related antimicrobial peptide (CRAMP) (murine homologues of hBD2 and LL-37, respectively) increase 1–8hours after acute permeability barrier disruption and normalize by 24hours, kinetics that mirror the lipid metabolic response to permeability barrier disruption. Artificial permeability barrier restoration, which inhibits the lipid-synthetic response leading to barrier recovery, blocks the increase in AMP mRNA/protein expression, further evidence that AMP expression is linked to permeability barrier function. Conversely, LB-derived AMPs are also important for permeability barrier homeostasis. Despite an apparent increase in mBD3 protein, CRAMP−/− mice delayed permeability barrier recovery, attributable to defective LB contents and abnormalities in the structure of the lamellar membranes that regulate permeability barrier function. These studies demonstrate that (1) the permeability and antimicrobial barriers are coordinately regulated by permeability barrier requirements and (2) CRAMP is required for permeability barrier homeostasis

    RNase 7 Contributes to the Cutaneous Defense against Enterococcus faecium

    Get PDF
    Background: Human skin is able to mount a fast response against invading microorganisms by the release of antimicrobial proteins such as the ribonuclease RNase 7. Because RNase 7 exhibits high activity against Enterococcus faecium the aim of this study was to further explore the role of RNase 7 in the cutaneous innate defense system against E. faecium. Methodology/Principal Findings: Absolute quantification using real-time PCR and ELISA revealed that primary keratinocytes expressed high levels of RNase 7. Immunohistochemistry showed RNase 7 expression in all epidermal layers of the skin with an intensification in the upper more differentiated layers. Furthermore, RNase 7 was secreted by keratinocytes in vitro and in vivo in a site-dependent way. RNase 7 was still active against E. faecium at low pH (5.5) or high NaCl (150 mM) concentration and the bactericidal activity of RNase 7 against E. faecium required no ribonuclease activity as shown by recombinant RNase 7 lacking enzymatic activity. To further explore the role of RNase 7 in cutaneous defense against E. faecium, we investigated whether RNase 7 contributes to the E. faecium killing activity of skin extracts derived from stratum corneum. Treatment of the skin extract with an RNase 7 specific antibody, which neutralizes the antimicrobial activity of RNase 7, diminished its E. faecium killing activity. Conclusions/Significance: Our data indicate that RNase 7 contributes to the E. faecium-killing activity of skin extracts an

    Memory Concerns, Memory Performance and Risk of Dementia in Patients with Mild Cognitive Impairment

    Get PDF
    Background: Concerns about worsening memory ("memory concerns"; MC) and impairment in memory performance are both predictors of Alzheimer's dementia (AD). The relationship of both in dementia prediction at the pre-dementia disease stage, however, is not well explored. Refined understanding of the contribution of both MC and memory performance in dementia prediction is crucial for defining at-risk populations. We examined the risk of incident AD by MC and memory performance in patients with mild cognitive impairment (MCI). Methods: We analyzed data of 417 MCI patients from a longitudinal multicenter observational study. Patients were classified based on presence (n=305) vs. absence (n=112) of MC. Risk of incident AD was estimated with Cox Proportional-Hazards regression models. Results: Risk of incident AD was increased by MC (HR=2.55, 95% CI: 1.33-4.89), lower memory performance (HR=0.63, 95% CI: 0.56-0.71) and ApoE4-genotype (HR=1.89, 95% CI: 1.18-3.02). An interaction effect between MC and memory performance was observed. The predictive power of MC was greatest for patients with very mild memory impairment and decreased with increasing memory impairment. Conclusions: Our data suggest that the power of MC as a predictor of future dementia at the MCI stage varies with the patients' level of cognitive impairment. While MC are predictive at early stage MCI, their predictive value at more advanced stages of MCI is reduced. This suggests that loss of insight related to AD may occur at the late stage of MCI

    Apolipoprotein E-dependent load of white matter hyperintensities in Alzheimer’s disease: a voxel-based lesion mapping study

    Get PDF
    Introduction: White matter (WM) magnetic resonance imaging (MRI) hyperintensities are common in Alzheimer’s disease (AD), but their pathophysiological relevance and relationship to genetic factors are unclear. In the present study, we investigated potential apolipoprotein E (APOE)-dependent effects on the extent and cognitive impact of WM hyperintensities in patients with AD. Methods: WM hyperintensity volume on fluid-attenuated inversion recovery images of 201 patients with AD (128 carriers and 73 non-carriers of the APOE ε4 risk allele) was determined globally as well as regionally with voxel-based lesion mapping. Clinical, neuropsychological and MRI data were collected from prospective multicenter trials conducted by the German Dementia Competence Network. Results: WM hyperintensity volume was significantly greater in non-carriers of the APOE ε4 allele. Lesion distribution was similar among ε4 carriers and non-carriers. Only ε4 non-carriers showed a correlation between lesion volume and cognitive performance. Conclusion: The current findings indicate an increased prevalence of WM hyperintensities in non-carriers compared with carriers of the APOE ε4 allele among patients with AD. This is consistent with a possibly more pronounced contribution of heterogeneous vascular risk factors to WM damage and cognitive impairment in patients with AD without APOE ε4-mediated risk

    Simultaneous decoupling of bottom and charm quarks

    Full text link
    We compute the decoupling relations for the strong coupling, the light quark masses, the gauge-fixing parameter, and the light fields in QCD with heavy charm and bottom quarks to three-loop accuracy taking into account the exact dependence on mc/mbm_c/m_b. The application of a low-energy theorem allows the extraction of the three-loop effective Higgs-gluon coupling valid for extensions of the Standard Model with additional heavy quarks from the decoupling constant of αs\alpha_s.Comment: 30 page

    Correlation of cell growth and heterologous protein production by Saccharomyces cerevisiae

    Get PDF
    With the increasing demand for biopharmaceutical proteins and industrial enzymes, it is necessary to optimize the production by microbial fermentation or cell cultures. Yeasts are well established for the production of a wide range of recombinant proteins, but there are also some limitations; e.g., metabolic and cellular stresses have a strong impact on recombinant protein production. In this work, we investigated the effect of the specific growth rate on the production of two different recombinant proteins. Our results show that human insulin precursor is produced in a growth-associated manner, whereas alpha-amylase tends to have a higher yield on substrate at low specific growth rates. Based on transcriptional analysis, we found that the difference in the production of the two proteins as function of the specific growth rate is mainly due to differences in endoplasmic reticulum processing, protein turnover, cell cycle, and global stress response. We also found that there is a shift at a specific growth rate of 0.1 h(-1) that influences protein production. Thus, for lower specific growth rates, the alpha-amylase and insulin precursor-producing strains present similar cell responses and phenotypes, whereas for higher specific growth rates, the two strains respond differently to changes in the specific growth rate
    corecore