11 research outputs found

    Automated Sample Preparation Platform for Mass Spectrometry-Based Plasma Proteomics and Biomarker Discovery

    No full text
    The identification of novel biomarkers from human plasma remains a critical need in order to develop and monitor drug therapies for nearly all disease areas. The discovery of novel plasma biomarkers is, however, significantly hampered by the complexity and dynamic range of proteins within plasma, as well as the inherent variability in composition from patient to patient. In addition, it is widely accepted that most soluble plasma biomarkers for diseases such as cancer will be represented by tissue leakage products, circulating in plasma at low levels. It is therefore necessary to find approaches with the prerequisite level of sensitivity in such a complex biological matrix. Strategies for fractionating the plasma proteome have been suggested, but improvements in sensitivity are often negated by the resultant process variability. Here we describe an approach using multidimensional chromatography and on-line protein derivatization, which allows for higher sensitivity, whilst minimizing the process variability. In order to evaluate this automated process fully, we demonstrate three levels of processing and compare sensitivity, throughput and reproducibility. We demonstrate that high sensitivity analysis of the human plasma proteome is possible down to the low ng/mL or even high pg/mL level with a high degree of technical reproducibility

    Factors Governing the Precision of Subvisible Particle Measurement Methods - A Case Study with a Low-Concentration Therapeutic Protein Product in a Prefilled Syringe

    No full text
    PURPOSE: The current study was performed to assess the precision of the principal subvisible particle measurement methods available today. Special attention was given to identifying the sources of error and the factors governing analytical performance. METHODS: The performance of individual techniques was evaluated using a commercial biologic drug product in a prefilled syringe container. In control experiments, latex spheres were used as standards and instrument calibration suspensions. RESULTS: The results reported in this manuscript clearly demonstrated that the particle measurement techniques operating in the submicrometer range have much lower precision than the micrometer size-range methods. It was established that the main factor governing the relatively poor precision of submicrometer methods in general and inherently, is their low sampling volume and the corresponding large extrapolation factors for calculating final results. CONCLUSIONS: The variety of new methods for submicrometer particle analysis may in the future support product characterization; however, the performance of the existing methods does not yet allow for their use in routine practice and quality control

    Quantification Of HER2 By Targeted Mass Spectrometry in Formalin-Fixed Paraffin-Embedded Breast Cancer Tissues

    No full text
    The ability to accurately quantify proteins in formalin-fixed paraffin-embedded tissues using targeted mass spectrometry opens exciting perspectives for biomarker discovery. We have developed and evaluated a selected reaction monitoring assay for the human receptor tyrosine-protein kinase erbB-2 (HER2) in formalin-fixed paraffin-embedded breast tumors. Peptide candidates were identified using an untargeted mass spectrometry approach in relevant cell lines. A multiplexed assay was developed for the six best candidate peptides and evaluated for linearity, precision and lower limit of quantification. Results showed a linear response over a calibration range of 0.012 to 100 fmol on column (R2: 0.99-1.00).The lower limit of quantification was 0.155 fmol on column for all peptides evaluated. The six HER2 peptides were quantified by selected reaction monitoring in a cohort of 40 archival formalin-fixed paraffin-embedded tumor tissues from women with invasive breast carcinomas, which showed different levels of HER2 gene amplification as assessed by standard methods used in clinical pathology. The amounts of the six HER2 peptides were highly and significantly correlated with each other, indicating that peptide levels can be used as surrogates of protein amounts in formalin-fixed paraffin-embedded tissues. After normalization for sample size, selected reaction monitoring peptide measurements were able to correctly predict 90% of cases based on HER2 amplification as defined by the American Society of Clinical Oncology and College of American Pathologists. In conclusion, the developed assay showed good analytical performances and a high agreement with immunohistochemistry and fluorescence in situ hybridization data. This study demonstrated that selected reaction monitoring allows to accurately quantify protein expression in formalin-fixed paraffin-embedded tissues and represents therefore a powerful approach for biomarker discovery studies. The untargeted mass spectrometry data is available via ProteomeXchange whereas the quantification data by selected reaction monitoring is available on the Panorama Public website

    Quantitative ADME Proteomics - CYP and UGT Enzymes in the Beagle Dog Liver and Intestine

    No full text
    International audiencePURPOSE:Beagle dogs are used to study oral pharmacokinetics and guide development of drug formulations for human use. Since mechanistic insight into species differences is needed to translate findings in this species to human, abundances of cytochrome P450 (CYP) and uridine diphosphate glucuronosyltransferase (UGT) drug metabolizing enzymes have been quantified in dog liver and intestine.METHODS:Abundances of enzymes were measured in Beagle dog intestine and liver using selected reaction monitoring mass spectrometry.RESULTS:Seven and two CYPs were present in the liver and intestine, respectively. CYP3A12 was the most abundant CYP in both tissues. Seven UGT enzymes were quantified in the liver and seven in the intestine although UGT1A11 and UGT1A9 were present only in the intestine and UGT1A7 and UGT2B31 were found only in the liver. UGT1A11 and UGT1A2 were the most abundant UGTs in the intestine and UGT2B31 was the most abundant UGT in the liver. Summed abundance of UGT enzymes was similar to the sum of CYP enzymes in the liver whereas intestinal UGTs were up to four times more abundant than CYPs. The estimated coefficients of variation of abundance estimates in the livers of 14 donors were separated into biological and technical components which ranged from 14 to 49% and 20 to 39%, respectively.CONCLUSIONS:Abundances of canine CYP enzymes in liver and intestine have been confirmed in a larger number of dogs and UGT abundances have been quantified for the first time. The biological variability in hepatic CYPs and UGTs has also been estimated

    Binding to SMN2 pre-mRNA-protein complex elicits specificity for small molecule splicing modifiers

    No full text
    Small molecule splicing modifiers have been previously described that target the general splicing machinery and thus have low specificity for individual genes. Several potent molecules correcting the splicing deficit of the SMN2 (survival of motor neuron 2) gene have been identified and these molecules are moving towards a potential therapy for spinal muscular atrophy (SMA). Here by using a combination of RNA splicing, transcription, and protein chemistry techniques, we show that these molecules directly bind to two distinct sites of the SMN2 pre-mRNA, thereby stabilizing a yet unidentified ribonucleoprotein (RNP) complex that is critical to the specificity of these small molecules for SMN2 over other genes. In addition to the therapeutic potential of these molecules for treatment of SMA, our work has wide-ranging implications in understanding how small molecules can interact with specific quaternary RNA structures.ISSN:2041-172
    corecore