8,834 research outputs found

    Digital interactive image analysis by array processing

    Get PDF
    An attempt is made to draw a parallel between the existing geophysical data processing service industries and the emerging earth resources data support requirements. The relationship of seismic data analysis to ERTS data analysis is natural because in either case data is digitally recorded in the same format, resulting from remotely sensed energy which has been reflected, attenuated, shifted and degraded on its path from the source to the receiver. In the seismic case the energy is acoustic, ranging in frequencies from 10 to 75 cps, for which the lithosphere appears semi-transparent. In earth survey remote sensing through the atmosphere, visible and infrared frequency bands are being used. Yet the hardware and software required to process the magnetically recorded data from the two realms of inquiry are identical and similar, respectively. The resulting data products are similar

    Existence of a Density Functional for an Intrinsic State

    Full text link
    A generalization of the Hohenberg-Kohn theorem proves the existence of a density functional for an intrinsic state, symmetry violating, out of which a physical state with good quantum numbers can be projected.Comment: 6 page

    Multiple-Scattering Series For Color Transparency

    Full text link
    Color transparency CT depends on the formation of a wavepacket of small spatial extent. It is useful to interpret experimental searches for CT with a multiple scattering scattering series based on wavepacket-nucleon scattering instead of the standard one using nucleon-nucleon scattering. We develop several new techniques which are valid for differing ranges of energy. These techniques are applied to verify some early approximations; study new forms of the wave-packet-nucleon interaction; examine effects of treating wave packets of non-zero size; and predict the production of NN^*'s in electron scattering experiments.Comment: 26 pages, U.Wa. preprint 40427-23-N9

    Cooperating Agents for 3D Scientific Data Interpretation

    No full text
    Many organizations collect vast quantities of three-dimensional (3-D) scientific data in volumetric form for a range of purposes, including resource exploration, market forecasting, and process modelling. Traditionally, these data have been interpreted by human experts with only minimal software assistance. However, such manual interpretation is a painstakingly slow and tedious process. Moreover, since interpretation involves subjective judgements and each interpreter has different scientific knowledge and experience, formulation of an effective interpretation often requires the cooperation of numerous such experts. Hence, there is a pressing need for a software system in which individual interpretations can be generated automatically and then refined through the use of cooperative reasoning and information sharing. To this end, a prototype system, SurfaceMapper, has been developed in which a community of cooperating software agents automatically locate and display interpretations in a volume of 3-D scientific data. The challenges and experiences in designing and building such a system are discussed. Particular emphasis is given to the agents' interactions and an empirical evaluation of the effectiveness of different cooperation strategies is presented

    Systematic Analysis Method for Color Transparency Experiments

    Full text link
    We introduce a data analysis procedure for color transparency experiments which is considerably less model dependent than the transparency ratio method. The new method is based on fitting the shape of the A dependence of the nuclear cross section at fixed momentum transfer to determine the effective attenuation cross section for hadrons propagating through the nucleus. The procedure does not require assumptions about the hard scattering rate inside the nuclear medium. Instead, the hard scattering rate is deduced directly from the data. The only theoretical input necessary is in modelling the attenuation due to the nuclear medium, for which we use a simple exponential law. We apply this procedure to the Brookhaven experiment of Carroll et al and find that it clearly shows color transparency: the effective attenuation cross section in events with momentum transfer Q2Q^2 is approximately $40\ mb\ (2.2\ GeV^2/Q^2)$. The fit to the data also supports the idea that the hard scattering inside the nuclear medium is closer to perturbative QCD predictions than is the scattering of isolated protons in free space. We also discuss the application of our approach to electroproduction experiments.Comment: 11 pages, 11 figures (figures not included, available upon request), report # KU-HEP-92-2

    Implementing a Business Process Management System Using ADEPT: A Real-World Case Study

    Get PDF
    This article describes how the agent-based design of ADEPT (advanced decision environment for processed tasks) and implementation philosophy was used to prototype a business process management system for a real-world application. The application illustrated is based on the British Telecom (BT) business process of providing a quote to a customer for installing a network to deliver a specified type of telecommunication service. Particular emphasis is placed upon the techniques developed for specifying services, allowing heterogeneous information models to interoperate, allowing rich and flexible interagent negotiation to occur, and on the issues related to interfacing agent-based systems and humans. This article builds upon the companion article (Applied Artificial Intelligence Vol.14, no 2, pgs. 145-189) that provides details of the rationale and design of the ADEPT technology deployed in this application

    Variations in subcuticular acid phosphatase activity during the molting cycle of the euphausiid crustacean, Thysanoessa raschii (M. Sars) Hansen

    Get PDF
    A histochemical technique, applicable to intact euphausiids, has been used in the laboratory to demonstrate variations in the level of subcuticular acid phosphatase activity during the molting cycle of Thysanoessa raschii; it shows that there is a marked increase in such activity during the 24 hours in which ecdysis occurs. We suggest that the technique could form a useful tool in future studies on euphausiid biology since it would allow, for example, assessments of the numbers of individuals in any one collection or population that is passing through this particular 24-hour period at the time of sampling

    Evaluation and management implications of uncertainty in a multispecies size-structured model of population and community responses to fishing

    Get PDF
    1. Implementation of an ecosystem approach to fisheries requires advice on trade-offs among fished species and between fisheries yields and biodiversity or food web properties. However, the lack of explicit representation, analysis and consideration of uncertainty in most multispecies models has limited their application in analyses that could support management advice. 2. We assessed the consequences of parameter uncertainty by developing 78 125 multispecies size-structured fish community models, with all combinations of parameters drawn from ranges that spanned parameter values estimated from data and literature. This unfiltered ensemble was reduced to 188 plausible models, the filtered ensemble (FE), by screening outputs against fish abundance data and ecological principles such as requiring species' persistence. 3. Effects of parameter uncertainty on estimates of single-species management reference points for fishing mortality (FMSY, fishing mortality rate providing MSY, the maximum sustainable yield) and biomass (BMSY, biomass at MSY) were evaluated by calculating probability distributions of estimated reference points with the FE. There was a 50% probability that multispecies FMSY could be estimated to within ±25% of its actual value, and a 50% probability that BMSY could be estimated to within ±40% of its actual value. 4. Signal-to-noise ratio was assessed for four community indicators when mortality rates were reduced from current rates to FMSY. The slope of the community size spectrum showed the greatest signal-to-noise ratio, indicating that it would be the most responsive indicator to the change in fishing mortality F. Further, the power of an ongoing international monitoring survey to detect predicted responses of size spectrum slope was higher than for other size-based metrics. 5. Synthesis and applications: Application of the ensemble model approach allows explicit representation of parameter uncertainty and supports advice and management by (i) providing uncertainty intervals for management reference points, (ii) estimating working values of reference points that achieve a defined reduction in risk of not breaching the true reference point, (iii) estimating the responsiveness of population, community, food web and biodiversity indicators to changes in F, (iv) assessing the performance of indicators and monitoring programmes and (v) identifying priorities for data collection and changes to model structure to reduce uncertainty

    Developmental Differences in the Ability to Provide Temporal Information about Repeated Events

    Get PDF
    Children (n = 372) aged 4 - 8 years participated in 1 or 4 occurrences of a similar event and were interviewed 1 week later. Compared to 85% of children who participated once, less than 25% with repeated experience gave the exact number of times they participated, although all knew they participated more than once. Children with repeated experience were asked additional temporal questions and there were clear developmental differences. Older children were more able than younger children to judge relative order and temporal position of the four occurrences. They also demonstrated improved temporal memory for the first and last relative to the middle occurrences, while younger children did so only for the first. This is the first systematic demonstration of children’s memory for temporal information after a repeated event. We discuss implications for theories of temporal memory development and the practical implications of asking children to provide temporal information

    Sum Rule Description of Color Transparency

    Full text link
    The assumption that a small point-like configuration does not interact with nucleons leads to a new set of sum rules that are interpreted as models of the baryon-nucleon interaction. These models are rendered semi-realistic by requiring consistency with data for cross section fluctuations in proton-proton diffractive collisions.Comment: 22 pages + 3 postscript figures attache
    corecore