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Summary

1. Implementation of an ecosystem approach to fisheries requires advice on trade-offs among fished species and

between fisheries yields and biodiversity or food web properties. However, the lack of explicit representation,

analysis and consideration of uncertainty in most multispecies models has limited their application in analyses

that could supportmanagement advice.

2. We assessed the consequences of parameter uncertainty by developing 78 125 multispecies size-structured fish

communitymodels, with all combinations of parameters drawn from ranges that spanned parameter values estimated

fromdata and literature. This unfiltered ensemble was reduced to 188 plausiblemodels, the filtered ensemble (FE), by

screening outputs against fish abundance data and ecological principles such as requiring species’ persistence.

3. Effects of parameter uncertainty on estimates of single-species management reference points for fishing mor-

tality (FMSY, fishing mortality rate providing MSY, the maximum sustainable yield) and biomass (BMSY, bio-

mass at MSY) were evaluated by calculating probability distributions of estimated reference points with the FE.

There was a 50% probability that multispecies FMSY could be estimated to within�25% of its actual value, and

a 50%probability thatBMSY could be estimated to within�40%of its actual value.

4. Signal-to-noise ratio was assessed for four community indicators whenmortality rates were reduced from cur-

rent rates to FMSY. The slope of the community size spectrum showed the greatest signal-to-noise ratio, indicat-

ing that it would be the most responsive indicator to the change in fishing mortality F. Further, the power of an

ongoing international monitoring survey to detect predicted responses of size spectrum slope was higher than for

other size-basedmetrics.

5. Synthesis and applications: Application of the ensemble model approach allows explicit representation of

parameter uncertainty and supports advice and management by (i) providing uncertainty intervals for manage-

ment reference points, (ii) estimating working values of reference points that achieve a defined reduction in risk

of not breaching the true reference point, (iii) estimating the responsiveness of population, community, food web

and biodiversity indicators to changes in F, (iv) assessing the performance of indicators and monitoring pro-

grammes and (v) identifying priorities for data collection and changes tomodel structure to reduce uncertainty.

Key-words: biodiversity, ecosystem-based management, fish community, fisheries, food web, large

fish indicator, power analysis, risk, size-based, trade-off

Introduction

One facet of the adoption of an ecosystem approach to fisher-

ies is the need to specify and meet objectives for ecosystem

components and attributes as well as target species (Garcia &

Cochrane 2005; Rice 2011). This requires that objectives can

be defined and advice provided on management actions to

meet them. In practice, both agreeing on objectives and advis-

ing how to meet them have been challenging, in part because

advice on consequences of adopting alternate objectives and

the probability of meeting them is uncertain and this uncer-

tainty is not quantified.

Several models have been developed to assess fishing effects

on community or ecosystem properties (e.g. Plag�anyi 2007).

They have improved understanding of fisheries interactions

with ecosystems and are often used to underpin state assess-

ments, but relatively few are used operationally; the main

exceptions being those that consider interactions among small

groups of species (e.g. Gjosaeter, Bogstad & Tjelmeland 2002).*Correspondence author. E-mail: robert.thorpe@cefas.co.uk
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One reason for limited uptake is that model outputs are

assumed to be highly uncertain, and yet there have been few

attempts to express uncertainty and its implications (e.g. Hill

et al. 2007; Espinoza-Tenorio et al. 2012; Gaichas et al. 2012;

Link et al. 2012). This contrasts with analysis and advice on

single-species exploitation, for which advisers and managers

have longstanding experience presenting and addressing uncer-

tainty (e.g. Francis& Shotton 1997).

Effects of parameter uncertainty on complex ecosystem

models are poorly understood and may be challenging to

address owing to practical constraints such as long run-times

and few data for parameterization or validation. However, the

complexity of these models is not a prerequisite for addressing

many operational management questions (e.g. Fulton, Smith

& Johnson 2003; Butterworth & Plaganyi 2004), and a range

of less complex models that further simplify ecosystems and/or

deal with subsets of ecosystems can be adopted. One class of

these models includes size-based multispecies models. These

focus on groups of interacting fish species in an otherwise gen-

eralized food web and seek to predict changes in species’ abun-

dance at size as a function of fishing mortality F (e.g. Hall

et al. 2006; Rochet et al. 2011; Blanchard et al. 2014). These

models are practical to apply as they are based on measurable

properties of species’ life histories and dynamics, are relatively

straightforward to parameterize with empirical data and have

short run-times. They are also suitable for supporting manage-

ment advice as they predict the effects of changes in F on both

size and abundance of species in the modelled community and

can therefore be used to estimate single-species fisheries and

conservation reference points in a multispecies context as well

as a range of community metrics proposed or specified as indi-

cators for evaluating the fishing effects (e.g. Shin et al. 2005;

EU 2008, 2010; Greenstreet et al. 2011; Shephard, Reid &

Greenstreet 2011).

To support development of operational management advice

on the effects of fishing, we develop and apply a method to

assess and describe parameter uncertainty and its conse-

quences in a size-based multispecies model. Parameter uncer-

tainty is explicitly incorporated into the analysis by developing

multiple models based on the full range of possible parameter

values, rather than applying a singlemodel based on a best esti-

mate of each individual parameter. Emergent population

dynamics predicted by each model are then screened against

data to generate a reduced set of models displaying credible

dynamics. The approach is used to describe uncertainty in sin-

gle species and community reference points and single species

and community responses to alternate management actions.

Predicted uncertainties are used to assess the power of moni-

toring surveys to detect responses in communitymetrics and to

identify where investment in future data collection should be

targeted to reduce uncertainty.

Materials andmethods

Analyses were performed using a modified version of the length-based

multispecies model initially developed by Hall et al. (2006) to represent

the Georges Bank fish community and subsequently applied to the

North Sea community (Rochet et al. 2011). The model represents 21

fish species in 32 equal length classes (each c. 5 cm), spanning the full

size range of species represented in the model (Table 1). Progression of

individuals through length classes is represented using the deterministic

von Bertalanffy growth equation (VBGE). Individuals mature when

they reach a threshold size defined by a logistic model, with 50% of

individuals mature at the length of maturity (Lmat) defined in Table 1.

Reproduction is described with a spawner–recruit relationship, which

determines the numbers of recruits entering the smallest size class from

the biomass ofmature individuals. Species’ dynamics are linked via pre-

dation mortality (M2), which varies with predator abundance, and size

and species preference. Size preference is described with a preference

function based on a log-normal distribution and species preferencewith

a diet matrix indicating who eats whom (Hall et al. 2006). In each

length class, individuals are also susceptible to residual natural mortal-

ity (M1) and fishing mortality (F). Other details of model structure and

implementation are provided in Hall et al. (2006) and Rochet et al.

(2011).

Expected ranges of parameter uncertainty were expressed for seven

key parameters with a default estimate and four alternate values that

spanned the range of uncertainty reported in published literature or

estimated from data (Table S1).Model variants were established for all

combinations of parameter values, generating an initial set of 57

(78 125) variants. Each variant was run under ‘no-fishing’ and ‘historic

fishing’ scenarios, and outputs were screened to establish whether all

species persisted (with no-fishing) and species’ biomass was consistent

with independent estimates (with ‘historic fishing’, details below).

Model variants that produced outputs that did not meet these criteria

were excluded. The remaining model variants were treated as equally

plausible and dubbed the filtered ensemble (FE). Evaluations of fishing

scenarios were conducted using the FE and thus generated probability

distributions of outputs.

Eleven species in the model are assessed by ICESwith age-based sin-

gle-species models; Norway pout Trisopterus esmarkii (Nilsson), san-

deel Ammodytes spp., herring Clupea harengus Linnaeus, horse

mackerel Trachurus trachurus (Linnaeus), sole Solea solea (Linnaeus),

mackerel Scomber scombrus Linnaeus, whiting Merlangius merlangus

(Linnaeus), plaice Pleuronectes platessa Linnaeus, haddock Melano-

grammus aeglefinus (Linnaeus), codGadus morhuaLinnaeus and saithe

Pollachius virens (Linnaeus). For these species, default VBGE parame-

ters were calculated by fitting the VBGE to ICES weight-at-age data.

For remaining species, VBGE parameter estimates were taken from

Rochet et al. (2011) and Blanchard et al. (2014). Prey species that were

not individually modelled were represented as a constant resource of

1010 g of ‘other food’ available to all predator length classes at each

time step. This equates to a total of 2�5 9 106 tonnes of other food

available to the whole community at each time step. Preliminary sensi-

tivity tests involving 10-fold changes in other food, and varying its size

profile, confirmed that while some outputs from the FE were sensitive

to the quantity and representation of other food, these choices led to

unreasonable M2 values (Figs S1–S3, Sparholt 1990). The modelling

approach assumes that the modelled community is closed (dynamics

determined solely by internal processes), an assumption that is neces-

sarily violated to some extent in a continuousmarine environment.

Recruitment was assumed to be deterministic, with individuals

recruiting at the mid-point of the smallest length class. The Ricker

spawner–recruit relationship used by Hall et al. (2006) was replaced

with a hockey-stick spawner–recruit relationship (HS-SRR, Barrow-

man &Myers 2000). This was changed because the Ricker relationship

led to a steeper size spectrum slope (SSS) when unfished than at modest
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fishing pressures, in contrast with theory and observation (e.g. Rice &

Gislason 1996; Bianchi et al. 2000; Andersen & Beyer 2006) and

because the HS-SRR provided a better fit to ICES data which included

few recruitment estimates at relatively high spawner biomass. For the

default model parameterization, a (the initial slope of the HS-SRR)

was estimated as a function ofL∞ from data (Denney, Jennings &Rey-

nolds 2002), and an upper limit for b, the fraction of maximum spawn-

ing stock biomass (SSBmax) above which recruitment is assumed

constant, was estimated by fitting the HS-SRR to ICES spawner and

recruit abundance data from single-species stock assessments (ICES

2013). Lower values of bwere selected from a linear series of successive

20% reductions in b (Table S1). For each species, we then estimated a
from L∞ and the inflection point in the segmented regression as a frac-

tion of maximum spawner biomass (SSBmax). SSBmax for assessed spe-

cies was defined as the highest species’ SSB reported in ICES stock

assessments from 1990 to 2010. For non-assessed species, SSBmax was

each species’ highest SSB as estimated from swept area in the North

Sea Quarter 1 International BottomTrawl Survey (IBTS) from 1990 to

2010 (ICES 2012a). Swept area abundance estimates were corrected for

selectivity and availability by species, following the method of Fraser,

Greenstreet &Piet (2009).

Natural mortality was divided into non-predation (M1) and preda-

tion (M2) mortality, whereM2 varied with predator abundance. Total

predation mortality imposed by each predator was calculated based on

the food requirements needed to support growth, taking account of

growth efficiency. Predators consumed prey species defined as suitable

in a diet interaction matrix that specifies possible interactions among

all species. A predator of a given size could consume individuals of an

available prey species within a defined predator: prey size ratio (Hall

et al. 2006; Table S1). All modelled species also consume individuals of

a suitable size in ‘other food’. Mortality imposed by predators was par-

titioned among available prey according to relative prey abundance at

size. The default diet interaction matrix from Rochet et al. (2011) was

supplemented with two variants based on empirical diet data, where

predators were allowed to consume prey species if the frequency of

occurrence of the prey in diet data was greater than a specified thresh-

old (Tables S1–S4). For two remaining variants of the diet matrix, we

assumed that all species ate all other species or that pelagic species only

ate pelagic species, and demersal species only ate demersal species.

Fishing mortality was applied assuming species-specific relative size

selectivity established fromfits to ICES (2012b)F at length data.Model

scenarios were fishing at MSY (FMSY, the fishing mortality that pro-

duced the maximum sustainable yield, Table 1, Fig. S4) and fishing

with ‘historic’ fishing patterns (FHIST, Table 1, Fig. S4). For the FHIST

scenario, the F applied to each of the 11 modelled and assessed species

was mean F for 1990–2010 (ICES 2012b). Non-assessed species were

grouped with assessed species of similar morphology and behaviour

and were assumed to be fished at the same F (Pope et al. 2000). Poor

cod, gurnardEutriglia gurnardus (Linnaeus) andmonkfishLophius pis-

catorius Linnaeus were grouped with haddock, cod and whiting. Long

rough dab Hippoglossoides platessoides (Fabricius), dab Limanda li-

manda (Linnaeus), lemon soleMicrostomus kitt (Walbaum), witchGly-

ptocephalus cynoglossus (Linnaeus), starry ray Amblyraja radiata

(Donovan) and cuckoo ray Leucoraja naevus (M€uller & Henle) were

grouped with plaice. For the FMSY scenario, FMSY values for assessed

species were obtained from ICES (2012b). For the non-assessed species,

the F leading to 40% spawner-per-recruit (F40) was assumed to be a

proxy for FMSY, and F40 values were estimated following Le Quesne &

Jennings (2012).

Output from each of the 78 125 model variants was tested against

two test criteria to filter out variants with parameter sets leading to

unrealistic community properties. Each model variant was run for

45 years with F = 0 to predict an unfished equilibrium community

state, followed by 30 years fishing at FHIST. The first test criterion was

that all species should persist in the unfished model system, with bio-

mass exceeding 1% of current biomass estimates from ICES assess-

ments or survey data analyses. The second test criterion was applied

after 30 years fishing at FHIST. It specified that mean predicted biomass

of assessed species during the last 15 years of the FHIST simulation

should bemore than half the lowest, but less than twice the highest, bio-

mass estimate from 1990 to 2010 (assessment data from ICES 2012b).

We used a factor of two because biomass estimates from the single-spe-

cies assessments are uncertain, and because we adopted a deterministic

spawner–recruit relationshipwhen environmental trends and stochastic

processes influence recruitment dynamics in the real world. Using the

screening criteria, each of the 78 125 model variants was classified as

plausible or rejected. Consequences of modifying the factor, dubbed

the tolerance factor, from 1�5 to 3�0 were examined (Figs S5, S6 and

S7). Selected parameter options in the FE were examined to identify

which parameters introduced most uncertainty in model outputs, and

to assess whether model dynamics were independent of any given

parameter choice.

Acceptedmodel variants, referred to as theFE,were run for 30 years

into the future under given fishing scenarios to generate ensemble pre-

dictions of the potential response of individual species and community

metrics to F. For the FMSY scenario, all species were fished at their pre-

dicted FMSY, and at F = 0 to F = 5FMSY, in 0�1 steps. This set of FMSY

scenarios did not allow for examination of yield trade-offs among spe-

cies, as allFwere scaled equally (same proportional change in F applied

to eachmodelled species), but was used to provide a measure of the rel-

ative magnitude of uncertainty in predictions of the single-species refer-

ence points FMSY, BMSY (the SSB at FMSY) and YMSY (yield at FMSY)

derived in amultispecies context.

During simulations, biomass and yield of each species and the value

of each community metric were calculated annually. Community met-

rics calculated were as follows: mean length (ML), biomass fraction

>40 cm (dubbed the large fish indicator, LFI), slope of the size spec-

trum (slope of relationship between log numbers in each log size class

and log size, SSS) and mean maximum weight by biomass (biomass-

weighted mean of species’ W∞; a measure of the life-history composi-

tion of the community (mean maximum weight, MMW, Shin et al.

2005). Metrics were calculated using abundance estimates for individu-

als >15 cm, approximating sizes adequately selected in trawl surveys in

theNorth Sea (Fraser,Greenstreet&Piet 2009).When assessing fishing

effects on individual species, we referred to species as collapsed when

SSB fell below 10% of unexploited SSB. Outputs of simulations are

presented as frequency distributions, treating all variants in the FE as

equally plausible. Uncertainty was expressed as 50th and 90th percen-

tile intervals within the FE. The 50% and 90% intervals spanned the

25th to 75th and 5th to 95th percentiles of the frequency distribution of

output values generated by the FE, respectively.

We calculated the statistical power of the North Sea IBTS Quarter 1

survey to detect predicted changes in community metrics during a tran-

sition from fishing at FHIST to FMSY. Statistical power was defined as

the probability that the predicted change in metric value achieves a sta-

tistical significance (here set at 0�10) over a 5- or 15-year period. As well
as the statistical significance and sampling period, power depends on

the magnitude of the residual variance, which was estimated by taking

residuals from a loess smoother (Fryer&Nicholson 1993, span = 1) fit-

ted to a time series (1990–2011) of metrics calculated from North Sea

IBTS Quarter 1 survey data. Metrics were calculated from survey data

using only the species and size classes included in the multispecies
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model. Power to detect the predicted change in each metric during the

transition from fishing at FHIST to FMSY was estimated for each model

variant in the FE based on 10 000 random draws from a normal distri-

bution fitted to residuals of the empirical time series.

Results

Individual species’ biomass predictions from the models in the

unfiltered ensemble (UE), when fishing according to the FMSY

scenario, tended to span 2 or more orders of magnitude

(Fig. 1), indicating that initial spread of parameter choices

provided little constraint on predictions. Uncertainty in pre-

dicted biomass is greatly reduced for the FE where uncertainty

is reduced to between one-half and one order of magnitude

(Fig. 1). Only 188 of 78 125 possible model variants passed the

screening criteria. The default model did not pass the screening

criteria. Changing the screening criteria for biomass at FHIST

to allow a tolerance factor of 1�59 to 39 for the relationship

between ICES single-species biomass estimates andmodel out-

puts increased the size of the FE (Fig. S5), but had a small

effect on outputs and uncertainty and did not change qualita-

tive behaviour and relative performance of species and com-

munitymetrics (Figs S6 and S7).

To evaluate impacts of parameter uncertainty on estimates

of management reference points for each individual species in

the multispecies model, the spread of FMSY and BMSY esti-

mates for all models in the FE was compared with mean FMSY

calculated across all models in the FE. For FMSY, there was

50% probability that a given value was within �25% of the

mean and 90% probability that it was within �50% of the

mean (Table 2), for all species except plaice. For BMSY, there

was a 50% probability of predicting single-species values to

within�40%; 90% intervals were much wider, typically span-

ning a factor of 5–10. Probability distributions of outputs

from the FE provided information on uncertainty that could

inform decisions such as how to set FMSY to achieve a defined

reduction in the risk that true F exceeds FMSY. For example, if

FMSY for cod was 0�23, there would be 50% confidence that

the actual FMSY limit was not breached. However, if the FMSY

limit was set to increase confidence to 75%, or 95%, FMSY

would need to be reduced to 0�21 or 0�17, respectively

(Table 2).

Model FMSY predictions were consistent with single-species

estimates for 12 species, higher for eight and lower for sprat

(Fig. 2). FMSY estimates were higher for mid-sized species, the

likely explanation being predation release as large fish were

depleted at high F. Relationships between BMSY and B0 fol-

lowed theoretical expectations of BMSY � B0/2 (e.g. Punt

et al. 2014).

Community metrics showed qualitatively similar responses

to changes in F (Fig. 3), although the SSS showed a near linear

decline in response to increasing F, while the LFI, ML and

MMW displayed a nonlinear relationship with F. There was

considerable uncertainty in predicted values of the community

metrics at FMSY and across the full range of F (Fig. 3).

If a community metric is to provide feedback on effects of

management action, then it should show a response to these

effects and this should be detectable in monitoring data. This

requires that the change in metric value following a defined

management action should be greater than uncertainty in pre-

diction, and the predicted change in the metric value should be

detectable given interannual variation in data. To compare

theoretically expected change in community metrics with

uncertainty in prediction, the ratio of the metric at FHIST:

FMSY, for each FE variant, was compared with the 50% and

90% uncertainty intervals for the prediction at FHIST, where

the 50% and 90% uncertainty intervals were expressed as a

proportion of the mean metric value (Fig. 4). The mean

change in the values of the metrics fell outside the 50% uncer-

tainty interval for MMW, LFI and SSS, but not for ML. For

Fig. 1. Frequency distribution of estimated

biomass of modelled species at FMSY. Grey

histograms denote the frequency distribution

of biomass estimates from models in the unfil-

tered ensemble (UE), black histograms the

biomass estimates from models in the filtered

ensemble (FE). The vertical shaded band rep-

resents the biomass range reported by ICES

for assessed species for years 1990–2010.
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MMW, LFI and SSS, the predicted change in indicator values

for the entire FE lay outside the 50% uncertainty interval, and

for SSS, predicted change also lay outside the 90% interval.

Thus, SSS is expected to be the most responsive community

indicator.

Power of the North Sea IBTS to detect changes in commu-

nity metrics was assessed by comparing the magnitude of

change in mean metric values when model F transitioned from

FHIST to FMSY with the magnitude of interannual variation in

metric values from IBTS data. For community metrics applied

to all demersal species (Table 1, see Lifetype D1), there was a

0�6 to 0�8 mean power of detecting a change in ML, MMW or

LFI that occurred over 5 years and a mean power of >0�9 of

detecting a change in SSS (Fig. 5). After 15 years simulated

monitoring, mean power was still <0�8 for ML, �0�9 for

MMW,�0�95 for the LFI and 1�0 for SSS. For all community

metrics except SSS, there was significant variation in power

among FE variants after 15 years. For example, for LFI,

power ranged from 0�7 to 1�0. Power to predict changes in

community metrics for all demersal species was generally a lit-

tle lower than for strictly demersal species (Table 1, see Life-

type D2), but SSS still provided greatest power after 5 and

15 years (Fig. S8).

Total community yield was maximized when

F � 1�6 9 FMSY (Fig. 6). Fishingmortality had to be reduced

to FMSY or below to avoid all possibility of species’ collapse.

At 3 9 FMSY, an approximation of maximum ‘historic’ F for

North Sea target species, mean total yield was predicted to be

similar to yield at FMSY, or around 85% of the maximum, but

two species were expected to collapse, and probability of col-

lapse was >0�1 for another five species. In these fishing simula-

tions, F across all species was increased and decreased evenly,

with F ratios among species defined from single-species esti-

mates of FMSY. This fishing strategy tends to predict relatively

high yields for all species in the community at FMSY (Fig. S9)

Table 2. Estimates of single-species fisheries reference points with the filtered ensemble (FE). Mean estimates for FMSY and BMSY are presented as

uncertainty intervals (UI) spanning 50% and 90%of themembers of the FE.FMSY ratio is the ratio of the FMSY predicted by themultispecies model

to estimates ofFMSY from ICES single-species stock assessmentmodels

Common name

FMSY

(year�1)

50%UI FMSY

(year�1)

90%UIFMSY

(year�1)

FMSY

ratio

BMSY

(9105 t)

50%UIBMSY

(proportion)

90%UIBMSY

(proportion)

Sprat 0�78 0�65–0�91 0�52–1�04 0�60 1�26 0�64–1�32 0�46–1�95
Norway Pout 0�82 0�67–0�98 0�52–1�16 2�35 5�07 0�76–1�24 0�50–1�45
Sandeel 1�11 0�84–1�36 0�67–1�57 3�18 2�13 0�69–1�24 0�46–1�69
PoorCod 0�77 0�65–0�86 0�50–1�08 1�07 6�88 0�69–1�25 0�54–1�66
LongRoughDab 0�84 0�72–1�02 0�54–1�14 1�39 0�32 0�67–1�25 0�41–1�69
Dab 0�85 0�70–0�98 0�57–1�15 2�07 3�19 0�79–1�19 0�53–1�55
Herring 0�54 0�45–0�62 0�35–0�73 2�17 28�3 0�82–1�20 0�52–1�48
HorseMackerel 0�54 0�45–0�60 0�35–0�80 1�07 0�80 0�64–1�24 0�33–1�96
Lemon Sole 0�48 0�36–0�56 0�33–0�69 1�45 0�20 0�68–1�29 0�40–1�80
Sole 0�68 0�55–0�77 0�44–0�99 3�08 0�90 0�62–1�23 0�41–2�16
Mackerel 0�49 0�42–0�58 0�32–0�67 1�55 2�59 0�47–1�04 0�17–3�20
Whiting 0�75 0�59–0�90 0�46–1�03 3�55 4�26 0�62–1�23 0�39–2�15
Witch 0�34 0�27–0�41 0�24–0�49 1�27 0�28 0�57–1�27 0�33–2�04
Gurnard 0�84 0�70–0�97 0�54–1�19 3�12 2�81 0�65–1�20 0�41–1�96
Plaice 0�31 0�23–0�38 0�15–0�50 1�24 8�64 0�26–1�06 0�13–3�89
StarryRay 0�21 0�17–0�24 0�14–0�26 1�38 1�49 0�42–1�19 0�23–2�49
Haddock 0�48 0�36–0�57 0�30–0�72 1�61 4�70 0�52–1�19 0�26–2�61
CuckooRay 0�11 0�10–0�12 0�09–0�13 1�02 0�86 0�70–1�18 0�49–1�82
Monkfish 0�20 0�17–0�23 0�15–0�25 2�01 0�90 0�65–1�31 0�32–1�88
Cod 0�23 0�21–0�27 0�17–0�27 1�21 1�72 0�55–1�25 0�45–2�44
Saithe 0�34 0�24–0�42 0�21–0�45 1�13 5�54 0�69–1�21 0�51–1�99

(a)

(b)

Fig. 2. Relationship (a) between FMSY predicted with model variants

in the filtered ensemble (FE) as a proportion of FMSY from ICES sin-

gle-species stock assessment models (FSSMSY) and asymptotic length,

and (b) betweenBMSY as a proportion ofB0 predicted with model vari-

ants in the FE and asymptotic length. Black bars and open bars denote

50%and 90%uncertainty intervals, respectively.
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and few trade-offs that result from more uneven distributions

of F in relation to FMSY. The sensitivity of sprat to collapse

may be an indication of the differing age at selection applied in

our model and the ICES assessment models and/or may reflect

relatively high estimates ofFMSY in the ICES assessment.

We assessed contributions of each parameter to uncertainty

in model outputs (Table 3). Parameters contributing most to

overall uncertainty in the UE were L∞ followed by the diet

matrix, where only one option gave successful outcomes. The

choices ofM1, predator–prey size ratio, growth efficiency and

HS-SRR parameters all made similar contributions to overall

variance in model outputs; in each case, these parameter

choices only accounted for about 60% of the variance gener-

ated by choice of L∞. Only the diet matrix of Rochet et al.

(2011) was incorporated in FEmodel variants.A single param-

eter choice was responsible for >50% of successful outcomes

for predator–prey size ratio and growth efficiency, while the

distributionwasmore even forM1, HS-SRR a andL∞.

Discussion

Incorporating plausible parameter uncertainty in model inputs

led to many implausible outputs, and screening against data

removed >99% of variants. The resulting FE was used to

(a) (b)

(c) (d)

Fig. 3. Relationship between the community

metrics and fishing mortality predicted by the

model variants in the filtered ensemble (FE).

Black line is the mean value, and the grey and

broken lines denote uncertainty intervals

including 50% and 90% of FE members,

respectively. Metrics are (a) mean length, (b)

proportion of large fish, (c) size spectrum slope

and (d)meanmaximumweight.

(a) (b)

(c) (d)Fig. 4. Frequency distribution of community

metrics predicted with models in the filtered

ensemble (FE) and expressed as the ratio of

values of each metric at FHIST and FMSY

(black histogram). The vertical grey line is the

mean ratio of values of each metric at FHIST

and FMSY. Vertical shaded bands indicate

50% (dark) and 90% (light) uncertainty inter-

vals for the prediction at FHIST, with intervals

presented as a proportion of the mean metric

value.Metrics are (a) mean length, (b) propor-

tion of large fish, (c) size spectrum slope and

(d) meanmaximumweight.
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assess uncertainty in single species and community reference

points and single species and community responses to alternate

management actions. Probability distributions of outputs from

the FE provided information on uncertainty. This can inform

decisions on the values of reference points to achieve a defined

reduction in risk that reference points are not exceeded. Some

management frameworks are already designed to take account

of information on uncertainty. For example, in the United

States, the ‘Overfishing Limit’ (OL) corresponds to our central

estimate of BMSY while the ‘Acceptable Biological Catch’

(ABC) is set lower than the OL, with the difference between

OL and ABC determined by the uncertainty in the OL predic-

tion and the risk that the manager accepts (National Marine

Fisheries Service 2009). Outputs from our FE can also be used

to assess power of monitoring surveys to detect responses in

different community metrics and to identify parameters where

investment in future data collection or changes to model struc-

turemay be targeted to reduce uncertainty.

Results are clearly contingent on assumptions. In particular,

assumed selectivity patterns and relative F among species have

a significant influence on estimates of species’ abundance, size

composition and yield. For simplicity, we scaledF to all species

uniformly in relation to FMSY. This does not provide an accu-

rate representation of the way F is applied toNorth Sea stocks,

nor did it attempt to reflect a realistic alteration in F in

response to management measures, although both issues could

be addressed in future. Our preferred emphasis was on evaluat-

ing the extent and implications of uncertainty associated with

multispecies and community predictions, rather than re-evalu-

ating reference points forNorth Sea stocks.

Our main measure of indicator performance was sensitivity;

the capacity to differentiate responses to changes in F. Another

relevant measure is the specificity of response to fishing, the

extent to which changes in the indicator are driven by fishing

as opposed to other causes (e.g. Houle et al. 2012). To evaluate

specificity would require a model that sought to describe envi-

ronmental and other influences on the fish community. Our

evaluation of the capacity of four community indicators to

describe change in state when transiting from historic North

Sea F to the current management target of fishing at, or below,

FMSY (EU 2013) demonstrated that SSS tracked change with

lowest uncertainty. If model predictions of change were realis-

tic then power analysis demonstrated that the NS-IBTS was

(a) (b)

(c) (d)

Fig. 5. Frequency distributions for the predicted power of the North

Sea International Bottom Trawl Survey (IBTS) to detect modelled

changes in the values of communitymetrics for all demersal fishes (Life-

type D1, Table 1) when fishing mortality is reduced from FHIST to

FMSY over 5-year (grey) and 15-year (black) periods. Metrics are (a)

mean length, (b) proportion of large fish, (c) size spectrum slope and (d)

meanmaximumweight. Vertical lines denote mean power for all model

variants in the filtered ensemble (FE).

(a)

(b)

Fig. 6. (a) Probability of species’ collapse as a function of fishing mor-

tality, with probability expressed as the proportion of variants in the fil-

tered ensemble (FE) which result in collapses (B < 10% B0). The

lightest grey tone indicates probability for the most sensitive species

and successively darker tones the probabilities for two or more (up to

14) species. (b)Relationship betweenmean total yield from the commu-

nity and fishing mortality. Grey shading and broken lines denote 50%

and 90%uncertainty intervals, respectively.

Table 3. Proportion of accepted model variants in the filtered ensem-

ble (FE) that incorporated each parameter option, and the relative vari-

ance in biomass projections related to each parameter in the unfiltered

ensemble (UE). The relative variance describes the variance in biomass

projections related to each parameter as a proportion of the variance in

biomass projections related to asymptotic length. For parameter

choices, see Table S1

Parameter choice (FE) Relative

variance

(UE)1 2 3 4 5

Dietmatrix 1�00 0�00 0�00 0�00 0�00 0�83
Predation size selection 0�60 0�20 0�06 0�06 0�08 0�58
Naturalmortality (M1) 0�25 0�17 0�36 0�19 0�03 0�60
Spawner–recruit (b) 0�04 0�09 0�22 0�45 0�20 0�59
Growth efficiency (Ge) 0�07 0�62 0�10 0�03 0�18 0�61
Asymptotic length (L∞) 0�15 0�08 0�16 0�23 0�38 1�00
Spawner–recruit (a) 0�21 0�09 0�31 0�19 0�20 0�65
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more likely to detect trends in SSS, as defined here, than any

other indicator. Power to detect changes in community indica-

tors for strictly demersal species was better than for all demer-

sal species, likely because the former are more effectively

sampled by survey gear (Fraser, Greenstreet & Piet 2009)

resulting in lower interannual variation. The more consistent

and detectable response of SSS to changes in F compared with

other community indicators, including the LFI, was consistent

with results in Blanchard et al. (2014) based on a single param-

eterization of an alternate multispecies size-structured model

that accounted for food-dependent growth and incorporated

stochastic recruitment variation. Our power calculations

assume that community changes associated with moving from

FHIST to FMSY take 5 or 15 years. This allowed relative perfor-

mance of indicators to be compared. We did not attempt to

predict absolute rates of change in community indicators

because they are highly dependent on stochastic processes,

especially recruitment.

The frequency with which different parameter choices

appear in the FE, coupled with relative variance in outputs

associated with different parameters, helps identify when

investment in refining parameter values may be desirable.

Results suggested that the diet matrix was especially influen-

tial with neither empirically based diet matrix leading to

accepted models. This may be due to limitations of diet stud-

ies that may not provide evidence of consumption when some

prey species are small, relatively delicate and/or highly digest-

ible, because they quickly become unidentifiable in stomach

contents. This could apply to sprat consumption for example.

Developing diet matrices likely requires consideration of other

evidence for feeding interactions, as attempted by Rochet

et al. (2011). Further, in models with no explicit representa-

tion of spatial structure, the diet matrix also identifies feeding

interactions that are not feasible owing to species’ spatial sep-

aration. The simple assumption that everything eats every-

thing was not supported in our size- and species-based model.

Some species require a refuge from predators in the modelled

community for their dynamics to mimic those observed in

data.

Our conclusions about the effects of parameter uncertainty

may not hold for other models with more tightly coupled spe-

cies dynamics or including food-dependent growth (e.g. Blan-

chard et al. 2014). Further, much density dependence in our

model is generated by the HS-SRR which fits quite poorly to

data that are already expensive to generate. It is unlikely that

more data would reduce our uncertainty about a relationship

that has to be used in population models to capture a number

of unspecified density-dependent processes that may be impos-

sible to characterize given other sources of variation (e.g. Szu-

walski et al. 2014). Consequently, the advantages of a model

structure that is robust to parameter uncertainty are balanced

by disadvantages when model structure omits potentially

important processes.

In summary, there have been few attempts to explore effects

of uncertainty in multispecies models, which limits interpreta-

tion of outputs and their use inmanagement advice. This study

has demonstrated one practical method for explicitly introduc-

ing parameter uncertainty in model outputs and describing

uncertainty in single species and community reference points

and responses to fishing mortality. The research also demon-

strates the level of caution that needs to be applied in interpre-

tation of outputs from community models based on single

parameter sets.
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Table S1.Parameter values in the unfiltered ensemble.

Table S2.Dietmatrix option 1 (Rochet et al. 2011).

Table S3.Diet matrix option 3 with a cut-off diet fraction by numbers

of 0�001 (Pinnegar &Platts, 2011).

Table S4.Diet matrix option 4 with a cut-off diet fraction by numbers

of 0�01 (Pinnegar& Platts, 2011).

Table S5.Dietmatrix option 5.

Fig. S1. Estimated predation mortality rates (M2) in the unfished sys-

tem based on outputs frommodel variants in the filtered ensemble (FE)

with 1010 g ‘other food’.

Fig. S2. Estimated predation mortality rates (M2) in the unfished sys-

tem based on outputs frommodel variants in the filtered ensemble (FE)

with 109 g ‘other food’.

Fig. S3. Estimated predation mortality rates (M2) in the unfished sys-

tem based on model variants in the filtered ensemble (FE) with 1011 g

‘other food’.

Fig. S4. Fishing mortality as a function of length for the FHIST (historic

average 1990–2010, red line) and FMSY (single species MSY estimates,

blue line) scenarios.

Fig. S5. The number of models in the filtered ensemble (FE) as a func-

tion of the tolerance factor accepted when screening model outputs

against ICES stock assessment data.

Fig. S6. The effects of changes to the tolerance factor on mean FMSY

(red) and associated uncertainty (50%uncertainty intervals: black bars;

90%uncertainty intervals: open bars).

Fig. S7. The effects of changes to the tolerance factor on values of four

indicators and the associated uncertainty (50% uncertainty intervals:

black bars; 90%uncertainty intervals: open bars).

Fig. S8. Frequency distributions for the predicted power of the North

Sea International Bottom Trawl Survey (IBTS) to detect modelled

changes in the values of community metrics for strictly demersal fishes

(Lifetype D2, Table 1, accompanying paper) when fishing mortality is

reduced from FHIST to FMSY over 5 year (grey) and 15 year (black)

periods.

Fig. S9. Species’ yields as a function of fishing mortality, as predicted

withmodel variants in the filtered ensemble.
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