1,657 research outputs found

    A Dramatic Adaptation of William Hoffman\u27s Novel A Death of Dreams.

    Get PDF

    Lie Algebras and Growth in Branch Groups

    Full text link
    We compute the structure of the Lie algebras associated to two examples of branch groups, and show that one has finite width while the other, the ``Gupta-Sidki group'', has unbounded width. This answers a question by Sidki. More precisely, the Lie algebra of the Gupta-Sidki group has Gelfand-Kirillov dimension log3/log(1+2)\log3/\log(1+\sqrt2). We then draw a general result relating the growth of a branch group, of its Lie algebra, of its graded group ring, and of a natural homogeneous space we call "parabolic space", namely the quotient of the group by the stabilizer of an infinite ray. The growth of the group is bounded from below by the growth of its graded group ring, which connects to the growth of the Lie algebra by a product-sum formula, and the growth of the parabolic space is bounded from below by the growth of the Lie algebra. Finally we use this information to explicitly describe the normal subgroups of the "Grigorchuk group". All normal subgroups are characteristic, and the number of normal subgroups of index 2n2^n is odd and is asymptotically nlog2(3)n^{\log_2(3)}

    A truthful online mechanism for resource allocation in fog computing

    Get PDF
    Fog computing is a promising Internet of Things (IoT) paradigm in which data is processed near its source. Here, efficient resource allocation mechanisms are needed to assign limited fog resources to competing IoT tasks. To this end, we consider two challenges: (1) near-optimal resource allocation in a fog computing system; (2) incentivising self-interested fog users to report their tasks truthfully. To address these challenges, we develop a truthful online resource allocation mechanism called flexible online greedy. The key idea is that the mechanism only commits a certain amount of computational resources to a task when it arrives. However, when and where to allocate resources stays flexible until the completion of the task. We compare our mechanism to four benchmarks and show that it outperforms all of them in terms of social welfare by up to 10% and achieves a social welfare of about 90% of the offline optimal upper bound

    Metal–silicate partitioning of W and Mo and the role of carbon in controlling their abundances in the bulk silicate earth

    Get PDF
    The liquid metal–liquid silicate partitioning of molybdenum and tungsten during core formation must be well-constrained in order to understand the evolution of Earth and other planetary bodies, in particular because the Hf–W isotopic system is used to date early planetary evolution. The partition coefficients DMo and DW have been suggested to depend on pressure, temperature, silicate and metal compositions, although previous studies have produced varying and inconsistent models. Additionally, the high cationic charges of W and Mo in silicate melts make their partition coefficients particularly sensitive to oxygen fugacity. We combine 48 new high pressure and temperature experimental results with a comprehensive database of previous experiments to re-examine the systematics of Mo and W partitioning, and produce revised partitioning models from the large combined dataset. W partitioning is particularly sensitive to silicate and metallic melt compositions and becomes more siderophile with increasing temperature. We show that W has a 6+ oxidation state in silicate melts over the full experimental fO2 range of ΔIW −1.5 to −3.5. Mo has a 4+ oxidation state, and its partitioning is less sensitive to silicate melt composition but also depends on metallic melt composition. DMo stays approximately constant with increasing depth in Earth. Both W and Mo become more siderophile with increasing C content of the metal: we therefore performed experiments with varying C concentrations and fit epsilon interaction parameters:  = −7.03 ± 0.30 and  = −7.38 ± 0.57. W and Mo along with C are incorporated into a combined N-body accretion and core–mantle differentiation model, which already includes the major rock-forming elements as well as S, and moderately and highly siderophile elements. In this model, oxidation and volatility gradients extend through the protoplanetary disk so that Earth accretes heterogeneously. These gradients, as well as the metal–silicate equilibration pressure, are fitted using a least squares optimisation so that the model Earth-like planet reproduces the composition of the bulk silicate Earth (BSE) in terms of 17 simulated element concentrations (Mg, Fe, Si, Ni, Co, Nb, Ta, V, Cr, S, Pt, Pd, Ru, Ir, W, Mo, and C). The effects of the interaction of W and Mo with Si, S, O, and C in metal are included. Using this model with six separate terrestrial planet accretion simulations, we show that W and Mo require the early accreting Earth to be sulfur-depleted and carbon-enriched so that W and Mo are efficiently partitioned into Earth’s core and do not accumulate in the mantle. When this is the case, the produced Earth-like planets possess mantle compositions matching the BSE for all simulated elements. However, there are two distinct groups of estimates of the bulk mantle’s C abundance in the literature: low (∼100 ppm) and high (∼800 ppm), and all six models are consistent with the higher estimated carbon abundance. The low BSE C abundance would be achievable when the effects of the segregation of dispersed metal droplets produced in deep magma oceans by the disproportionation of Fe2+ to Fe3+ plus metallic Fe is included

    HIF-independent synthetic lethality between CDK4/6 inhibition and VHL loss across species

    Get PDF
    This is the author accepted manuscript. The final version is available from AAAS via the DOI in this recordData and materials availability: The full dataset of the dsRNA screen in Drosophila S2R+cells is available at www.flyrnai.org/screensummary. All other data needed to evaluate the conclusions in the paper are present in the paper or the Supplementary Materials.Inactivation of the VHL tumor suppressor gene is the signature initiating event in clear cell renal cell carcinoma (ccRCC), the most common form of kidney cancer, and causes the accumulation of hypoxia-inducible factor 2α (HIF-2α). HIF-2α inhibitors are effective in some ccRCC cases, but both de novo and acquired resistance have been observed in the laboratory and in the clinic. Here, we identified synthetic lethality between decreased activity of cyclin-dependent kinases 4 and 6 (CDK4/6) and VHL inactivation in two species (human and Drosophila) and across diverse human ccRCC cell lines in culture and xenografts. Although HIF-2α transcriptionally induced the CDK4/6 partner cyclin D1, HIF-2α was not required for the increased CDK4/6 requirement of VHL−/− ccRCC cells. Accordingly, the antiproliferative effects of CDK4/6 inhibition were synergistic with HIF-2α inhibition in HIF-2α–dependent VHL−/− ccRCC cells and not antagonistic with HIF-2α inhibition in HIF-2α–independent cells. These findings support testing CDK4/6 inhibitors as treatments for ccRCC, alone and in combination with HIF-2α inhibitors.National Cancer InstituteDana-Farber Cancer InstituteHoward Hughes Medical InstituteNational Institute of General Medical Science

    Streptococcus suis contains multiple phase-variable methyltransferases that show a discrete lineage distribution

    Get PDF
    Streptococcus suis is a major pathogen of swine, responsible for a number of chronic and acute infections, and is also emerging as a major zoonotic pathogen, particularly in South-East Asia. Our study of a diverse population of S. suis shows that this organism contains both Type I and Type III phase-variable methyltransferases. In all previous examples, phase-variation of methyltransferases results in genome wide methylation differences, and results in differential regulation of multiple genes, a system known as the phasevarion (phase-variable regulon). We hypothesized that each variant in the Type I and Type III systems encoded a methyltransferase with a unique specificity, and could therefore control a distinct phasevarion, either by recombination-driven shuffling between different specificities (Type I) or by biphasic on-off switching via simple sequence repeats (Type III). Here, we present the identification of the target specificities for each Type III allelic variant from S. suis using single-molecule, real-time methylome analysis. We demonstrate phase-variation is occurring in both Type I and Type III methyltransferases, and show a distinct association between methyltransferase type and presence, and population clades. In addition, we show that the phase-variable Type I methyltransferase was likely acquired at the origin of a highly virulent zoonotic sub-population

    Automatic memory processes in normal ageing and Alzheimer’s disease

    Get PDF
    This study examined the contribution of automatic and controlled uses of memory to stem completion in young, middle-aged and older adults, and compared these data with a study involving patients with Alzheimer’s disease (AD) who performed the same task (Hudson and Robertson, 2007). In an inclusion task participants aimed to complete three-letter word stems with a previously studied word, in an exclusion task the aim was to avoid using studied words to complete stems. Performances under inclusion and exclusion conditions were contrasted to obtain estimates of controlled and automatic memory processes using process-dissociation calculations (Jacoby, 1991). An age-related decline, evident from middle age was observed for the estimate of controlled processing, whereas the estimate of automatic processing remained invariant across the age groups. This pattern stands in contrast to what is observed in AD, where both controlled and automatic processes have been shown to be impaired. Therefore, the impairment in memory processing on stem completion that is found in AD is qualitatively different from that observed in normal ageing

    2015 ACVIM Small Animal Consensus Statement on Seizure Management in Dogs

    Get PDF
    This report represents a scientific and working clinical consensus statement on seizure management in dogs based on current literature and clinical expertise. The goal was to establish guidelines for a predetermined, concise, and logical sequential approach to chronic seizure management starting with seizure identification and diagnosis (not included in this report), reviewing decision‐making, treatment strategies, focusing on issues related to chronic antiepileptic drug treatment response and monitoring, and guidelines to enhance patient response and quality of life. Ultimately, we hope to provide a foundation for ongoing and future clinical epilepsy research in veterinary medicine

    Gad65 is recognized by t-cells, but not by antibodies from nod-mice

    Get PDF
    Since the 64kDa-protein glutamic acid decarboxylase (GAD) is one of the major autoantigens in T-cell mediated Type 1 diabetes, its relevance as a T-cell antigen needs to be clarified. After isolation of splenic T-cells from non-obese diabetic (NOD) mice, a useful model for human Type 1 diabetes, we found that these T-cells proliferate spontaneously when incubated with human GAD65, but only marginally after incubation with GAD67, both recombinated in the baculovirus system. No effect was observed with non-diabetic NOD mice or with T-cells from H-2 identical NON-NOD-H-2g7 control mice. It has been published previously that NOD mice develop autoantibodies against a 64kDa protein detected with mouse beta cells. In immunoprecipitation experiments with sera from the same NOD mice and 33S-methionine-labelled GAD, no autoantibody binding could be detected. We conclude firstly that GAD65 is an important T-cell antigen which is relevant early in the development of Type 1 diabetes and secondly that there is an antigenic epitope in the human GAD65 molecule recognized by NOD T-cells, but not by NOD autoantibodies precipitating conformational epitopes. Our results therefore provide further evidence that GAD65 is a T-cell antigen in NOD mice, being possibly also involved in very early processes leading to the development of human Type 1 diabetes

    Sequential Lonsdaleite to Diamond Formation in Ureilite Meteorites via In Situ Chemical Fluid/Vapor Deposition.

    Get PDF
    Ureilite meteorites are arguably our only large suite of samples from the mantle of a dwarf planet and typically contain greater abundances of diamond than any known rock. Some also contain lonsdaleite, which may be harder than diamond. Here, we use electron microscopy to map the relative distribution of coexisting lonsdaleite, diamond, and graphite in ureilites. These maps show that lonsdaleite tends to occur as polycrystalline grains, sometimes with distinctive fold morphologies, partially replaced by diamond + graphite in rims and cross-cutting veins. These observations provide strong evidence for how the carbon phases formed in ureilites, which, despite much conjecture and seemingly conflicting observations, has not been resolved. We suggest that lonsdaleite formed by pseudomorphic replacement of primary graphite shapes, facilitated by a supercritical C-H-O-S fluid during rapid decompression and cooling. Diamond + graphite formed after lonsdaleite via ongoing reaction with C-H-O-S gas. This graphite > lonsdaleite > diamond + graphite formation process is akin to industrial chemical vapor deposition but operates at higher pressure (∼1-100 bar) and provides a pathway toward manufacture of shaped lonsdaleite for industrial application. It also provides a unique model for ureilites that can reconcile all conflicting observations relating to diamond formation
    corecore