64 research outputs found

    Marine Reserves and Reproductive Biomass: A Case Study of a Heavily Targeted Reef Fish

    Get PDF
    Recruitment overfishing (the reduction of a spawning stock past a point at which the stock can no longer replenish itself) is a common problem which can lead to a rapid and irreversible fishery collapse. Averting this disaster requires maintaining a sufficient spawning population to buffer stochastic fluctuations in recruitment of heavily harvested stocks. Optimal strategies for managing spawner biomass are well developed for temperate systems, yet remain uncertain for tropical fisheries, where the danger of collapse from recruitment overfishing looms largest. In this study, we explored empirically and through modeling, the role of marine reserves in maximizing spawner biomass of a heavily exploited reef fish, Lethrinus harak around Guam, Micronesia. On average, spawner biomass was 16 times higher inside the reserves compared with adjacent fished sites. Adult density and habitat-specific mean fish size were also significantly greater. We used these data in an age-structured population model to explore the effect of several management scenarios on L. harak demography. Under minimum-size limits, unlimited extraction and all rotational-closure scenarios, the model predicts that preferential mortality of larger and older fish prompt dramatic declines in spawner biomass and the proportion of male fish, as well as considerable declines in total abundance. For rotational closures this occurred because of the mismatch between the scales of recovery and extraction. Our results highlight how alternative management scenarios fall short in comparison to marine reserves in preserving reproductively viable fish populations on coral reefs

    Behavioural and pathomorphological impacts of flash photography on benthic fishes

    Get PDF
    Millions of people take animal pictures during wildlife interactions, yet the impacts of photographer behaviour and photographic flashes on animals are poorly understood. We investigated the pathomorphological and behavioural impacts of photographer behaviour and photographic flashes on 14 benthic fish species that are important for scuba diving tourism and aquarium displays. We ran a field study to test effects of photography on fish behaviour, and two laboratory studies that tested effects of photographic flashes on seahorse behaviour, and ocular and retinal anatomy. Our study showed that effects of photographic flashes are negligible and do not have stronger impacts than those caused solely by human presence. Photographic flashes did not cause changes in gross ocular and retinal anatomy of seahorses and did not alter feeding success. Physical manipulation of animals by photographing scuba divers, however, elicited strong stress responses. This study provides important new information to help develop efficient management strategies that reduce environmental impacts of wildlife tourism

    The likelihood of extinction of iconic and dominant herbivores and detritivores of coral reefs: the parrotfishes and surgeonfishes

    Get PDF
    Parrotfishes and surgeonfishes perform important functional roles in the dynamics of coral reef systems. This is a consequence of their varied feeding behaviors ranging from targeted consumption of living plant material (primarily surgeonfishes) to feeding on detrital aggregates that are either scraped from the reef surface or excavated from the deeper reef substratum (primarily parrotfishes). Increased fishing pressure and widespread habitat destruction have led to population declines for several species of these two groups. Species-specific data on global distribution, population status, life history characteristics, and major threats were compiled for each of the 179 known species of parrotfishes and surgeonfishes to determine the likelihood of extinction of each species under the Categories and Criteria of the IUCN Red List of Threatened Species. Due in part to the extensive distributions of most species and the life history traits exhibited in these two families, only three (1.7%) of the species are listed at an elevated risk of global extinction. The majority of the parrotfishes and surgeonfishes (86%) are listed as Least Concern, 10% are listed as Data Deficient and 1% are listed as Near Threatened. The risk of localized extinction, however, is higher in some areas, particularly in the Coral Triangle region. The relatively low proportion of species globally listed in threatened Categories is highly encouraging, and some conservation successes are attributed to concentrated conservation efforts. However, with the growing realization of man's profound impact on the planet, conservation actions such as improved marine reserve networks, more stringent fishing regulations, and continued monitoring of the population status at the species and community levels are imperative for the prevention of species loss in these groups of important and iconic coral reef fishes

    Populated and Remote Reefs Spanning Multiple Archipelagos Across the Central and Western Pacific

    Get PDF
    Comparable information on the status of natural resources across large geographic and human impact scales provides invaluable context to ecosystem-based management and insights into processes driving differences among areas. Data on fish assemblages at 39 US flag coral reef-areas distributed across the Pacific are presented. Total reef fish biomass varied by more than an order of magnitude: lowest at densely-populated islands and highest on reefs distant from human populations. Remote reefs (<50 people within 100 km) averaged ∼4 times the biomass of "all fishes" and 15 times the biomass of piscivores compared to reefs near populated areas. Greatest within-archipelagic differences were found in Hawaiian and Mariana Archipelagos, where differences were consistent with, but likely not exclusively driven by, higher fishing pressure around populated areas. Results highlight the importance of the extremely remote reefs now contained within the system of Pacific Marine National Monuments as ecological reference areas

    Comparative phylogeography of reef fishes from the Gulf of Aden to the Arabian Sea reveals two cryptic lineages

    Get PDF
    Arabian Sea is a heterogeneous region with high coral cover and warm stable conditions at the western end (Djibouti), in contrast to sparse coral cover, cooler temperatures, and upwelling at the eastern end (southern Oman). We tested for barriers to dispersal across this region (including the Gulf of Aden and Gulf of Oman), using mitochondrial DNA surveys of 11 reef fishes. Study species included seven taxa from six families with broad distributions across the Indo-Pacific and four species restricted to the Arabian Sea (and adjacent areas). Nine species showed no significant genetic partitions, indicating connectivity among contrasting environments spread across 2000 km. One butterflyfish (Chaetodon melannotus) and a snapper (Lutjanus kasmira) showed phylogenetic divergences of d = 0.008 and 0.048, respectively, possibly indicating cryptic species within these broadly distributed taxa. These genetic partitions at the western periphery of the Indo-Pacific reflect similar partitions recently discovered at the eastern periphery of the Indo-Pacific (the Hawaiian and the Marquesan Archipelagos), indicating that these disjunctive habitats at the ends of the range may serve as evolutionary incubators for coral reef organisms. © 2017 Springer-Verlag Berlin HeidelbergTh

    Depth refuge and the impacts of SCUBA spearfishing on coral reef fishes

    Get PDF
    In recent decades, spearfishing with SCUBA has emerged as an efficient method for targeting reef fish in deeper waters. However, deeper waters are increasingly recognised as a potential source of refuge that may help sustain fishery resources. We used a combination of historical catch data over a 20-year time period and fishery-independent surveys to investigate the effects of SCUBA spearfishing on coral reef fish populations in the southern Mariana Islands. Two jurisdictions were studied; Guam, where SCUBA spearfishing is practiced, and the nearby Commonwealth of Northern Mariana Islands (CNMI), where SCUBA spearfishing has been banned since 2003. Fishery-independent data were collected using baited remote underwater stereo-video systems (stereo-BRUVs) stratified by depth, marine protected area status and jurisdiction. Herbivores (primary consumers) dominated spearfishing catches, with parrotfish (scarines) and surgeonfish/unicornfish (acanthurids) the main groups harvested. However, the large, endangered humphead wrasse (Cheilinus undulatus) was the main species by weight landed by SCUBA spearfishers. SCUBA spearfishing was associated with declining size of scarines over time and catches shifting from a dominance of large parrotfishes to a mixed assemblage with increasing proportions of acanthurids. Comparisons between Guam and the nearby CNMI revealed differences in the assemblage of fished species and also greater size of scarines and acanthurids in deep water where SCUBA fishing is banned. These results suggest that SCUBA spearfishing impacts reef fish populations and that the restriction of this fishing method will ensure refuge for fish populations in deeper waters. We recommend a ban on SCUBA spearfishing to preserve or aid the recovery of large, functionally important coral reef species and to improve the sustainability of coral reef fisheries

    A Mouse Model of the Human Fragile X Syndrome I304N Mutation

    Get PDF
    The mental retardation, autistic features, and behavioral abnormalities characteristic of the Fragile X mental retardation syndrome result from the loss of function of the RNA–binding protein FMRP. The disease is usually caused by a triplet repeat expansion in the 5′UTR of the FMR1 gene. This leads to loss of function through transcriptional gene silencing, pointing to a key function for FMRP, but precluding genetic identification of critical activities within the protein. Moreover, antisense transcripts (FMR4, ASFMR1) in the same locus have been reported to be silenced by the repeat expansion. Missense mutations offer one means of confirming a central role for FMRP in the disease, but to date, only a single such patient has been described. This patient harbors an isoleucine to asparagine mutation (I304N) in the second FMRP KH-type RNA–binding domain, however, this single case report was complicated because the patient harbored a superimposed familial liver disease. To address these issues, we have generated a new Fragile X Syndrome mouse model in which the endogenous Fmr1 gene harbors the I304N mutation. These mice phenocopy the symptoms of Fragile X Syndrome in the existing Fmr1–null mouse, as assessed by testicular size, behavioral phenotyping, and electrophysiological assays of synaptic plasticity. I304N FMRP retains some functions, but has specifically lost RNA binding and polyribosome association; moreover, levels of the mutant protein are markedly reduced in the brain specifically at a time when synapses are forming postnatally. These data suggest that loss of FMRP function, particularly in KH2-mediated RNA binding and in synaptic plasticity, play critical roles in pathogenesis of the Fragile X Syndrome and establish a new model for studying the disorder

    Observations of migrant exchange and mixing in a coral reef fish metapopulation link scales of marine population connectivity

    No full text
    Much progress has been made toward understanding marine metapopulation dynamics, largely because of multilocus microsatellite surveys able to connect related individuals within the metapopulation. However, most studies are focused on small spatial scales, tens of kilometers, while demographic exchange at larger spatial scales remains poorly documented. Additionally, many small-scale demographic studies conflict with broad-scale phylogeographic patterns concerning levels of marine population connectivity, highlighting a need for data on more intermediate scales. Here, we investigated demographic recruitment processes of a commercially important coral reef fish, the bluespine unicornfish (Naso unicornis) using a suite of mitochondrial DNA (mtDNA) and microsatellite markers. Sampling for this study ranged across the southern Marianas Islands, a linear distance of 250 km and included 386 newly settled postlarval recruits. In contrast with other studies, we report that cohorts of recruits were genetically homogeneous in space and time, with no evidence of temporally stochastic sweepstakes reproduction. The genetic diversity of recruits was high and commensurate with that of the adult population. In addition, there is substantial evidence that 2 recruits, separated by 250 km, were full siblings. This is the largest direct observation of dispersal to date for a coral reef fish. All indications suggest that subpopulations of N. unicornis experience high levels of demographic migrant exchange and metapopulation mixing on a spatial scale of hundreds of kilometers, consistent with high levels of broad-scale genetic connectivity previously reported in this species. © The American Genetic Association. 2013. All rights reserved

    Changes in the Number of Rural Bank Branches in India, 1991 to 2008

    No full text
    1. Underwater visual census (UVC) using SCUBA is a commonly used method for assessing reef fish communities. Evidence suggests, however, that fish avoid divers due to the sound of bubbles produced by open-circuit SCUBA, and avoidance behaviour is more pronounced as fishing pressure increases. Despite the potential for producing biased counts and conclusions, these behavioural effects have rarely been quantified, especially when assessing the effectiveness of marine protected areas (MPAs). 2. To test the magnitude of avoidance behaviour, we surveyed fish populations inside and outside two MPAs in Guam, using two diving systems: standard open-circuit (OC) SCUBA and a closed-circuit rebreather (CCR) that produces no bubbles. Data were collected using a diver-operated stereo-video system (stereo-DOV), which provided counts of relative abundance, measures of fish length and the minimum approach distance of the diver to a fish. 3. Inside MPAs, fish surveys conducted with CCR recorded similar community metrics to fish surveys conducted with conventional OC SCUBA. In contrast, outside the MPAs, the bubble-free diving system recorded 48% more species and up to 260% greater fish abundance. These differences reflected the ability of a diver wearing the silent CCR unit to sample the larger, most heavily targeted species that are shy of divers in fished areas. This difference was also large enough to change some results from ‘reject’ to ‘accept’ the null hypothesis of ‘no significant differences exist between fished and protected areas’. 4. The use of CCR for fish surveys clearly minimizes behavioural biases associated with fish avoiding open-circuit SCUBA divers. We recommend the use of this bubble-free diving system for surveys assessing reef fish populations, especially in areas where fish are heavily targeted by spearfishing. If fish behaviour is not accounted for, surveys using SCUBA could result in erroneous conclusions when comparing fished and protected areas. While the behaviour of fish towards divers is rarely mentioned in conclusions from studies using UVC, it is an important source of bias that should be acknowledged and minimized where possible
    • …
    corecore