91 research outputs found

    Structure and function of the human Poly(ADP-ribose) polymerase enzyme family

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Biology, 2013.Cataloged from PDF version of thesis.Includes bibliographical references.The poly(ADP-ribose) polymerase (PARP) family of enzymes in humans is comprised of 17 proteins. PARP-1, the first member of the family, synthesizes a large, complex post-translational modification, poly(ADP-ribose). While PARP-1 and some other PARPs have been extensively functionally characterized, the enzymatic and cellular functions of many PARPs are unknown. This thesis presents work that seeks to characterize the enzymatic functions of the PARP family. First, experimental demonstration of the automodification capacity of each PARP is presented. We find that PARP enzymatic activity largely conforms to bioinformatic predictions of PARP activity. Then, we seek to provide a structural rationale for these enzymatic capabilities based on the analysis of extant and modeled crystal structures of each PARP. We present a structural hypothesis for catalytic differences among PARPs. Finally, we examine methods for the identification of cellular targets of PARP activity and functional interaction partners of PARPs. Together, these elements of PARP characterization will aid in the discovery of physiologically relevant targets and a mechanistic understanding of PARP enzymatic activity in the cellular context.by Jennifer E. Rood.Ph.D

    Vitamin D status in female military personnel during combat training

    Get PDF
    Vitamin D is an essential nutrient for maintaining bone health. Recent data suggest that vitamin D and calcium supplementation might affect stress fracture incidence in military personnel. Although stress fracture is a health risk for military personnel during training, no study has investigated changes in vitamin D status in Soldiers during United States (US) Army basic combat training (BCT). This longitudinal study aimed to determine the effects of BCT on 25-hydroxyvitamin D (25(OH)D) and parathyroid hormone (PTH) levels in female Soldiers. Serum 25(OH)D and PTH were assessed in 74 fasted Soldier volunteers before and after an 8-week BCT course conducted between August and October in Columbia, South Carolina. In the total study population, 25(OH)D levels decreased (mean ± SD) from 72.9 ± 30.0 to 63.3 ± 19.8 nmol/L (P < 0.05) and PTH levels increased from 36.2 ± 15.8 to 47.5 ± 21.2 pg/mL (P < 0.05) during BCT. Ethnicity affected changes in vitamin D status (ethnicity-by-time interaction, P < 0.05); 25(OH)D decreased (P < 0.05) in both Hispanic and non-Hispanic whites, but did not change in non-Hispanic blacks. Ethnicity did not affect BCT-induced changes in PTH. These data indicate that vitamin D status in female Soldiers may decline during military training in the late summer and early autumn months in the Southeastern US. Future studies should strive to determine the impact of military clothing and seasonality on vitamin D status, as well as the functional impact of declining vitamin D status on bone health

    Reduced adipose tissue oxygenation in human obesity evidence for rarefaction, macrophage chemotaxis, and inflammation without an angiogenic response

    Get PDF
    OBJECTIVE-Based on rodent studies, we examined the hypothesis that increased adipose tissue (AT) mass in obesity without an adequate support of vascularization might lead to hypoxia, macrophage infiltration, and inflammation. RESEARCH DESIGN AND METHODS-Oxygen partial pressure (AT pO 2) and AT temperature in abdominal AT (9 lean and 12 overweight/obese men and women) was measured by direct insertion of a polarographic Clark electrode. Body composition was measured by dual-energy X-ray absorptiometry, and insulin sensitivity was measured by hyperinsulinemic-euglycemic clamp. Abdominal subcutaneous tissue was used for staining, quantitative RT-PCR, and chemokine secretion assay. RESULTS-AT pO 2 was lower in overweight/obese subjects than lean subjects (47 ± 10.6 vs. 55 ± 9.1 mmHg); however, this level of pO 2 did not activate the classic hypoxia targets (pyruvate dehydrogenase kinase and vascular endothelial growth factor [VEGF]). AT pO 2 was negatively correlated with percent body fat (R =-0.50, P \u3c 0.05). Compared with lean subjects, overweight/ obese subjects had 44% lower capillary density and 58% lower VEGF, suggesting AT rarefaction (capillary drop out). This might be due to lower peroxisome proliferator-activated receptor γ1 and higher collagen VI mRNA expression, which correlated with AT pO 2 (P \u3c 0.05). Of clinical importance, AT pO 2 negatively correlated with CD68 mRNA and macrophage inflammatory protein 1α secretion (R =-0.58, R =-0.79, P \u3c 0.05), suggesting that lower AT pO 2 could drive AT inflammation in obesity. CONCLUSIONS-Adipose tissue rarefaction might lie upstream of both low AT pO 2 and inflammation in obesity. These results suggest novel approaches to treat the dysfunctional AT found in obesity. © 2009 by the American Diabetes Association

    Appetite Suppression and Altered Food Preferences Coincide with Changes in Appetite-Mediating Hormones During Energy Deficit at High Altitude, But Are Not Affected by Protein Intake

    Get PDF
    Appetite suppression and altered food preferences coincide with changes in appetite-mediating hormones during energy deficit at high altitude, but are not affected by protein intake. High Alt Med Biol. 19:156–169, 2018.—Anorexia and unintentional body weight loss are common during high altitude (HA) sojourn, but underlying mechanisms are not fully characterized, and the impact of dietary macronutrient composition on appetite regulation at HA is unknown. This study aimed to determine the effects of a hypocaloric higher protein diet on perceived appetite and food preferences during HA sojourn and to examine longitudinal changes in perceived appetite, appetite mediating hormones, and food preferences during acclimatization and weight loss at HA. Following a 21-day level (SL) period, 17 unacclimatized males ascended to and resided at HA (4300 m) for 22 days. At HA, participants were randomized to consume measured standard-protein (1.0 g protein/kg/d) or higher protein (2.0 g/kg/d) hypocaloric diets (45% carbohydrate, 30% energy restriction) and engaged in prescribed physical activity to induce an estimated 40% energy deficit. Appetite, food preferences, and appetite-mediating hormones were measured at SL and at the beginning and end of HA. Diet composition had no effect on any outcome. Relative to SL, appetite was lower during acute HA (days 0 and 1), but not different after acclimatization and weight loss (HA day 18), and food preferences indicated an increased preference for sweet- and low-protein foods during acute HA, but for high-fat foods after acclimatization and weight loss. Insulin, leptin, and cholecystokinin concentrations were elevated during acute HA, but not after acclimatization and weight loss, whereas acylated ghrelin concentrations were suppressed throughout HA. Findings suggest that appetite suppression and altered food preferences coincide with changes in appetite-mediating hormones during energy deficit at HA. Although dietary protein intake did not impact appetite, the possible incongruence with food preferences at HA warrants consideration when developing nutritional strategies for HA sojourn

    Metabolic syndrome and risk factors for cardiovascular disease: are nonagenarians protected?

    Get PDF
    This study assessed cardiovascular disease risk factors in three groups of human subjects aged 20–34 [young, 20 male (M)/33 female (F)], 60–74 (aged, 29M/29F), and > 90 years (nonagenarian, 47M/50F). Components of the metabolic syndrome, cardiovascular disease, and markers of inflammation and oxidative stress were assessed. Nonagenarians weighed less than the two other groups (P < 0.001); however, there was no difference in percent fat among the three groups. Aged individuals had the highest prevalence of the metabolic syndrome (P < 0.001) according to the Adult Treatment Panel III classification. Both fibrinogen and homocysteine concentrations were significantly higher in the nonagenarians compared to younger groups. However, there were no significant differences between groups in fasting insulin, high sensitive C-reactive protein, and plasminogen activator inhibitor 1 concentrations. There were also no relationships between inflammation/ oxidative stress and the metabolic syndrome or cardiovascular disease although nonagenarians appear to be protected from oxidative damage to DNA

    Altitude Acclimatization Alleviates the Hypoxia-Induced Suppression of Exogenous Glucose Oxidation During Steady-State Aerobic Exercise

    Get PDF
    This study investigated how high-altitude (HA, 4300 m) acclimatization affected exogenous glucose oxidation during aerobic exercise. Sea-level (SL) residents (n = 14 men) performed 80-min, metabolically matched exercise (V˙O2 ∼ 1.7 L/min) at SL and at HA &lt; 5 h after arrival (acute HA, AHA) and following 22-d of HA acclimatization (chronic HA, CHA). During HA acclimatization, participants sustained a controlled negative energy balance (-40%) to simulate the “real world” conditions that lowlanders typically experience during HA sojourns. During exercise, participants consumed carbohydrate (CHO, n = 8, 65.25 g fructose + 79.75 g glucose, 1.8 g carbohydrate/min) or placebo (PLA, n = 6). Total carbohydrate oxidation was determined by indirect calorimetry and exogenous glucose oxidation by tracer technique with 13C. Participants lost (P ≤ 0.05, mean ± SD) 7.9 ± 1.9 kg body mass during the HA acclimatization and energy deficit period. In CHO, total exogenous glucose oxidized during the final 40 min of exercise was lower (P &lt; 0.01) at AHA (7.4 ± 3.7 g) than SL (15.3 ± 2.2 g) and CHA (12.4 ± 2.3 g), but there were no differences between SL and CHA. Blood glucose and insulin increased (P ≤ 0.05) during the first 20 min of exercise in CHO, but not PLA. In CHO, glucose declined to pre-exercise concentrations as exercise continued at SL, but remained elevated (P ≤ 0.05) throughout exercise at AHA and CHA. Insulin increased during exercise in CHO, but the increase was greater (P ≤ 0.05) at AHA than at SL and CHA, which did not differ. Thus, while acute hypoxia suppressed exogenous glucose oxidation during steady-state aerobic exercise, that hypoxic suppression is alleviated following altitude acclimatization and concomitant negative energy balance

    Human total, basal and activity energy expenditures are independent of ambient environmental temperature

    Get PDF
    Acknowledgments The DLW database, which can be found at https://www.dlwdatabase.org, is hosted by the International Atomic Energy Agency (IAEA) and generously supported by Taiyo Nippon Sanso and SERCON . We are grateful to the IAEA and these companies for their support. XYZ was supported by the Chinese Academy of Sciences (grant CAS 153E11KYSB20190045 to J.R.S.), and the database was also supported by the US National Science Foundation (grant BCS-1824466 to H.P.). The funders played no role in the content of this manuscript.Peer reviewedPublisher PD

    The Pediatric Cell Atlas:Defining the Growth Phase of Human Development at Single-Cell Resolution

    Get PDF
    Single-cell gene expression analyses of mammalian tissues have uncovered profound stage-specific molecular regulatory phenomena that have changed the understanding of unique cell types and signaling pathways critical for lineage determination, morphogenesis, and growth. We discuss here the case for a Pediatric Cell Atlas as part of the Human Cell Atlas consortium to provide single-cell profiles and spatial characterization of gene expression across human tissues and organs. Such data will complement adult and developmentally focused HCA projects to provide a rich cytogenomic framework for understanding not only pediatric health and disease but also environmental and genetic impacts across the human lifespan

    Greater male variability in daily energy expenditure develops through puberty

    Get PDF
    There is considerably greater variation in metabolic rates between men than between women, in terms of basal, activity and total (daily) energy expenditure (EE). One possible explanation is that EE is associated with male sexual characteristics (which are known to vary more than other traits) such as musculature and athletic capacity. Such traits might be predicted to be most prominent during periods of adolescence and young adulthood, when sexual behaviour develops and peaks. We tested this hypothesis on a large dataset by comparing the amount of male variation and female variation in total EE, activity EE and basal EE, at different life stages, along with several morphological traits: height, fat free mass and fat mass. Total EE, and to some degree also activity EE, exhibit considerable greater male variation (GMV) in young adults, and then a decrease in the degree of GMV in progressively older individuals. Arguably, basal EE, and also morphometrics, do not exhibit this pattern. These findings suggest that single male sexual characteristics may not exhibit peak GMV in young adulthood, however total and perhaps also activity EE, associated with many morphological and physiological traits combined, do exhibit GMV most prominently during the reproductive life stages

    Variability in energy expenditure is much greater in males than females

    Get PDF
    publishedVersionPaid open acces
    corecore