12 research outputs found

    Rosiglitazone Induces Mitochondrial Biogenesis in Differentiated Murine 3T3-L1 and C3H/10T1/2 Adipocytes

    Get PDF
    Growing evidence indicates that PPARγ agonists, including rosiglitazone (RSG), induce adipose mitochondrial biogenesis. By systematically analyzing mitochondrial gene expression in two common murine adipocyte models, the current study aimed to further establish the direct role of RSG and capture temporal changes in gene transcription. Microarray profiling revealed that in fully differentiated 3T3-L1 and C3H/10T1/2 adipocytes treated with RSG or DMSO vehicle for 1, 2, 4, 7, 24, and 48 hrs, RSG overwhelmingly increased mitochondrial gene transcripts time dependently. The timing of the increases was consistent with the cascade of organelle biogenesis, that is, initiated by induction of transcription factor(s), followed by increases in the biosynthesis machinery, and then by increases in functional components. The transcriptional increases were further validated by increased mitochondrial staining, citrate synthase activity, and O2 consumption, and were found to be associated with increased adiponectin secretion. The work provided further insight on the mechanism of PPARγ-induced mitochondrial biogenesis in differentiated adipocytes

    Mitochondria-localized AMPK responds to local energetics and contributes to exercise and energetic stress-induced mitophagy

    Get PDF
    Mitochondria form a complex, interconnected reticulum that is maintained through coordination among biogenesis, dynamic fission, and fusion and mitophagy, which are initiated in response to various cues to maintain energetic homeostasis. These cellular events, which make up mitochondrial quality control, act with remarkable spatial precision, but what governs such spatial specificity is poorly understood. Herein, we demonstrate that specific isoforms of the cellular bioenergetic sensor, 5′ AMP-activated protein kinase (AMPKα1/α2/β2/γ1), are localized on the outer mitochondrial membrane, referred to as mitoAMPK, in various tissues in mice and humans. Activation of mitoAMPK varies across the reticulum in response to energetic stress, and inhibition of mitoAMPK activity attenuates exercise-induced mitophagy in skeletal muscle in vivo. Discovery of a mitochondrial pool of AMPK and its local importance for mitochondrial quality control underscores the complexity of sensing cellular energetics in vivo that has implications for targeting mitochondrial energetics for disease treatment

    miR‐206 family is important for mitochondrial and muscle function, but not essential for myogenesis in vitro

    No full text
    miR-206, miR-1a-1, and miR-1a-2 are induced during differentiation of skeletal myoblasts and promote myogenesis in vitro. miR-206 is required for skeletal muscle regeneration in vivo. Although this miRNA family is hypothesized to play an essential role in differentiation, a triple knock-out (tKO) of the three genes has not been done to test this hypothesis. We report that tKO C2C12 myoblasts generated using CRISPR/Cas9 method differentiate despite the expected derepression of the miRNA targets. Surprisingly, their mitochondrial function is diminished. tKO mice demonstrate partial embryonic lethality, most likely due to the role of miR-1a in cardiac muscle differentiation. Two tKO mice survive and grow normally to adulthood with smaller myofiber diameter, diminished physical performance, and an increase in PAX7 positive satellite cells. Thus, unlike other miRNAs important in other differentiation pathways, the miR-206 family is not absolutely essential for myogenesis and is instead a modulator of optimal differentiation of skeletal myoblasts

    Label-Free Quantification of Intracellular Mitochondrial Dynamics Using Dielectrophoresis

    No full text
    Mitochondrial dynamics play an important role within several pathological conditions, including cancer and neurological diseases. For the purpose of identifying therapies that target aberrant regulation of the mitochondrial dynamics machinery and characterizing the regulating signaling pathways, there is a need for label-free means to detect the dynamic alterations in mitochondrial morphology. We present the use of dielectrophoresis for label-free quantification of intracellular mitochondrial modifications that alter cytoplasmic conductivity, and these changes are benchmarked against label-based image analysis of the mitochondrial network. This is validated by quantifying the mitochondrial alterations that are carried out by entirely independent means on two different cell lines: human embryonic kidney cells and mouse embryonic fibroblasts. In both cell lines, the inhibition of mitochondrial fission that leads to a mitochondrial structure of higher connectivity is shown to substantially enhance conductivity of the cell interior, as apparent from the significantly higher positive dielectrophoresis levels in the 0.5–15 MHz range. Using single-cell velocity tracking, we show ∼10-fold higher positive dielectrophoresis levels at 0.5 MHz for cells with a highly connected versus those with a highly fragmented mitochondrial structure, suggesting the feasibility for frequency-selective dielectrophoretic isolation of cells to aid the discovery process for development of therapeutics targeting the mitochondrial machinery

    Optimized chemical probes for REV-ERB alpha

    No full text
    REV-ERB alpha has emerged as an important target for regulation of circadian rhythm and its associated physiology. Herein, we report on the optimization of a series of REV-ERB alpha agonists based on G5K4112 (1) for potency, selectivity, and bioavailability.(1) Potent REV-ERB alpha agonists 4, 10, 16, and 23 are detailed for their ability to suppress BMAL and IL-6 expression from human cells while also demonstrating excellent selectivity over LAR alpha. Amine 4 demonstrated in vivo bioavailability after either iv or oral dosing

    Optimized Chemical Probes for REV-ERBα

    No full text
    REV-ERBα has emerged as an important target for regulation of circadian rhythm and its associated physiology. Herein, we report on the optimization of a series of REV-ERBα agonists based on GSK4112 (<b>1</b>) for potency, selectivity, and bioavailability. Potent REV-ERBα agonists <b>4</b>, <b>10</b>, <b>16</b>, and <b>23</b> are detailed for their ability to suppress BMAL and IL-6 expression from human cells while also demonstrating excellent selectivity over LXRα. Amine <b>4</b> demonstrated in vivo bioavailability after either iv or oral dosing
    corecore