248 research outputs found

    Does settlement plate material matter? The influence of substrate type on fouling community development

    Get PDF
    Benthic community composition and ascidian abundance can differ dramatically between adjacent man-made and natural substrates. Although multiple factors, including light exposure, surface orientation, predation exposure, and habitat type, are known to contribute to these patterns, few studies have directly tested the influence of substrate identity on community development. We compared fouling communities on settlement plates composed of commonly occurring natural (granite) and artificial (concrete, high density polyethylene, and PVC) marine materials deployed from late May to mid November 2014 from a floating dock in Newcastle, NH. We sought to determine if observed patterns resulted from differential recruitment onto substrate materials or post-settlement survival and growth. To do this, half of the plates were cleaned during bi-weekly examinations, and half were left un-cleaned. Preliminary analyses indicate that community composition differs between substrate types. These results will help us understand how substrate features contribute to non-native species establishment and habitat dominance, and may inform decisions regarding material usage in marine construction. These findings also underline the importance of settlement substrate choice in scientific studies, as plate material may influence experimental conclusions

    Geography and Location Are the Primary Drivers of Office Microbiome Composition.

    Get PDF
    In the United States, humans spend the majority of their time indoors, where they are exposed to the microbiome of the built environment (BE) they inhabit. Despite the ubiquity of microbes in BEs and their potential impacts on health and building materials, basic questions about the microbiology of these environments remain unanswered. We present a study on the impacts of geography, material type, human interaction, location in a room, seasonal variation, and indoor and microenvironmental parameters on bacterial communities in offices. Our data elucidate several important features of microbial communities in BEs. First, under normal office environmental conditions, bacterial communities do not differ on the basis of surface material (e.g., ceiling tile or carpet) but do differ on the basis of the location in a room (e.g., ceiling or floor), two features that are often conflated but that we are able to separate here. We suspect that previous work showing differences in bacterial composition with surface material was likely detecting differences based on different usage patterns. Next, we find that offices have city-specific bacterial communities, such that we can accurately predict which city an office microbiome sample is derived from, but office-specific bacterial communities are less apparent. This differs from previous work, which has suggested office-specific compositions of bacterial communities. We again suspect that the difference from prior work arises from different usage patterns. As has been previously shown, we observe that human skin contributes heavily to the composition of BE surfaces. IMPORTANCE Our study highlights several points that should impact the design of future studies of the microbiology of BEs. First, projects tracking changes in BE bacterial communities should focus sampling efforts on surveying different locations in offices and in different cities but not necessarily different materials or different offices in the same city. Next, disturbance due to repeated sampling, though detectable, is small compared to that due to other variables, opening up a range of longitudinal study designs in the BE. Next, studies requiring more samples than can be sequenced on a single sequencing run (which is increasingly common) must control for run effects by including some of the same samples in all of the sequencing runs as technical replicates. Finally, detailed tracking of indoor and material environment covariates is likely not essential for BE microbiome studies, as the normal range of indoor environmental conditions is likely not large enough to impact bacterial communities

    A summary of water-quality and salt marsh monitoring, Humboldt Bay, California

    Get PDF
    This report summarizes data-collection activities associated with the U.S. Geological Survey Humboldt Bay Water-Quality and Salt Marsh Monitoring Project. This work was undertaken to gain a comprehensive understanding ofwater-quality conditions, salt marsh accretion processes, marsh-edge erosion, and soil-carbon storage in Humboldt Bay, California. Multiparameter sondes recorded water temperature, specific conductance, and turbidity at a 15-minute timestep at two U.S. Geological Survey water-quality stations: Mad River Slough near Arcata, California (U.S. Geological Survey station 405219124085601) and (2) Hookton Slough near Loleta, California (U.S. Geological Survey station 404038124131801). At each station, discrete water samples were collected to develop surrogate regression models that were used to compute a continuous time seriesof suspended-sediment concentration from continuously measured turbidity. Data loggers recorded water depth at a 6-minute timestep in the primary tidal channels (Mad River Slough and Hookton Slough) in two adjacent marshes (Mad River marsh and Hookton marsh). The marsh monitoring network included five study marshes. Three marshes (Mad River, Manila, and Jacoby) are in the northern embayment of Humboldt Bay and two marshes (White and Hookton) are in the southern embayment. Surface deposition and elevation change were measured using deep rod surface elevation tables and feldspar marker horizons. Sediment characteristics and soil-carbon storage were measured using a total of 10 shallow cores, distributed across 5 study marshes, collected using an Eijkelkamp peat sampler. Rates of marsh edge erosion (2010–19) were quantified in four marshes (Mad River, Manila, Jacoby, and White) by estimating changes in the areal extent of the vegetated marsh plain using repeat aerial imagery and light detection and ranging (LiDAR)-derived elevation data. During the monitoring period (2016–19), the mean suspended-sediment concentration computed for Hookton Slough (50±20 milligrams per liter [mg/L]) was higher than Mad River Slough (18±7 mg/L). Uncertainty in mean suspended-sediment concentration values is reported using a 90-percent confidence interval. Across the five study marshes, elevation change (+1.8±0.6 millimeters per year[mm/yr]) and surface deposition (+2.5±0.5 mm/yr) were lower than published values of local sea-level rise (4.9±0.8 mm/yr), and mean carbon density was 0.029±0.005 grams of carbon per cubic centimeter. From 2010 to 2019, marsh edge erosion and soil carbon loss were greatest in low-elevation marshes with the marsh edge characterized by a gentle transition from mudflat to vegetated marsh (herein, ramped edge morphology) and larger wind-wave exposure. Jacoby Creek marsh experienced the greatest edge erosion. In total, marsh edge erosion was responsible for 62.3 metric tons of estuarine soil carbon storage loss across four study marshes. Salt marshes are an important component of coastal carbon, which is frequently referred to as “blue carbon.” The monitoring data presented in this report provide fundamental information needed to manage blue carbon stocks, assess marsh vulnerability, inform sea-level rise adaptation planning, and build coastal resiliency to climate change

    Environmental inactivation and irrigation-mediated regrowth of Escherichia coli O157:H7 on romaine lettuce when inoculated in a fecal slurry matrix

    Get PDF
    Field trials were conducted in July–August and October 2012 to quantify the inactivation rate of Escherichia coli O157:H7 when mixed with fecal slurry and applied to romaine lettuce leaves. Lettuce was grown under commercial conditions in Salinas Valley, California. One-half milliliter of rabbit, chicken, or pig fecal slurry, containing an average of 4.05 × 107 CFU E. coli O157:H7 (C0), was inoculated onto the upper (adaxial) surface of a lower leaf on 288 heads of lettuce per trial immediately following a 2.5 h irrigation event. To estimate the bacterial inactivation rate as a function of time, fecal matrix, irrigation and seasonal climate effects, sets of lettuce heads (n = 28) were sampled each day over 10 days and the concentration of E. coli O157:H7 (Ct) determined. E. coli O157:H7 was detected on 100% of heads during the 10-day duration, with concentrations ranging from ≤340 MPN/head (∼5-log reduction) to >3.45 × 1012 MPN/head (∼5-log growth). Relative to C0, on day 10 (Ct = 12) we observed an overall 2.6-log and 3.2-log mean reduction of E. coli O157:H7 in July and October, respectively. However, we observed relative maximum concentrations due to bacterial growth on day 6 (maximum Ct = 8) apparently stimulated by foliar irrigation on day 5. From this maximum there was a mean 5.3-log and 5.1-log reduction by day 10 (Ct = 12) for the July and October trials, respectively. This study provides insight into the inactivation and growth kinetics of E. coli O157:H7 on romaine lettuce leaves under natural field conditions. This study provides evidence that harvesting within 24 h post irrigation has the potential to increase the concentration of E. coli O157:H7 contamination, if present on heads of romaine lettuce; foliar irrigation can temporarily stimulate substantial regrowth of E. coli O157:H7

    Differential Response of Bacterial Microdiversity to Simulated Global Change

    Get PDF
    ACKNOWLEDGMENTS UC Irvine and the LRGCE are located on the ancestral homelands of the Indigenous Kizh and Acjachemen nations. We thank Alejandra Rodriguez Verdugo, Katrine Whiteson, Kendra Walters, Cynthia Rodriguez, Kristin Barbour, Alberto Barron Sandoval, Joanna Wang, Joia Kai Capocchi, Pauline Uyen Phuong Nguyen, Khanh Thuy Huynh, and Clara Barnosky for their input on analyses and previous drafts and for laboratory help. This work was supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research grants DE-SC0016410 and DE-SC0020382.Peer reviewedPublisher PD

    Loss of mTORC1 signaling alters pancreatic α cell mass and impairs glucagon secretion

    Get PDF
    Glucagon plays a major role in the regulation of glucose homeostasis during fed and fasting states. However, the mechanisms responsible for the regulation of pancreatic α cell mass and function are not completely understood. In the current study, we identified mTOR complex 1 (mTORC1) as a major regulator of α cell mass and glucagon secretion. Using mice with tissue-specific deletion of the mTORC1 regulator Raptor in α cells (αRaptorKO), we showed that mTORC1 signaling is dispensable for α cell development, but essential for α cell maturation during the transition from a milk-based diet to a chow-based diet after weaning. Moreover, inhibition of mTORC1 signaling in αRaptorKO mice and in WT animals exposed to chronic rapamycin administration decreased glucagon content and glucagon secretion. In αRaptorKO mice, impaired glucagon secretion occurred in response to different secretagogues and was mediated by alterations in KATP channel subunit expression and activity. Additionally, our data identify the mTORC1/FoxA2 axis as a link between mTORC1 and transcriptional regulation of key genes responsible for α cell function. Thus, our results reveal a potential function of mTORC1 in nutrient-dependent regulation of glucagon secretion and identify a role for mTORC1 in controlling α cell-mass maintenance
    corecore