27 research outputs found

    Brain connectivity alterations in early psychosis: from clinical to neuroimaging staging.

    Get PDF
    Early in the course of psychosis, alterations in brain connectivity accompany the emergence of psychiatric symptoms and cognitive impairments, including processing speed. The clinical-staging model is a refined form of diagnosis that places the patient along a continuum of illness conditions, which allows stage-specific interventions with the potential of improving patient care and outcome. This cross-sectional study investigates brain connectivity features that characterize the clinical stages following a first psychotic episode. Structural brain networks were derived from diffusion-weighted MRI for 71 early-psychosis patients and 76 healthy controls. Patients were classified into stage II (first-episode), IIIa (incomplete remission), IIIb (one relapse), and IIIc (two or more relapses), according to the course of the illness until the time of scanning. Brain connectivity measures and diffusion parameters (fractional anisotropy, apparent diffusion coefficient) were investigated using general linear models and sparse linear discriminant analysis (sLDA), studying distinct subgroups of patients who were at specific stages of early psychosis. We found that brain connectivity impairments were more severe in clinical stages following the first-psychosis episode (stages IIIa, IIIb, IIIc) than in first-episode psychosis (stage II) patients. These alterations were spatially diffuse but converged on a set of vulnerable regions, whose inter-connectivity selectively correlated with processing speed in patients and controls. The sLDA suggested that relapsing-remitting (stages IIIb, IIIc) and non-remitting (stage IIIa) patients are characterized by distinct dysconnectivity profiles. Our results indicate that neuroimaging markers of brain dysconnectivity in early psychosis may reflect the heterogeneity of the illness and provide a connectomics signature of the clinical-staging model

    N-acetylcysteine add-on treatment leads to an improvement of fornix white matter integrity in early psychosis: a double-blind randomized placebo-controlled trial

    Get PDF
    Mechanism-based treatments for schizophrenia are needed, and increasing evidence suggests that oxidative stress may be a target. Previous research has shown that N-acetylcysteine (NAC), an antioxidant and glutathione (GSH) precursor almost devoid of side effects, improved negative symptoms, decreased the side effects of antipsychotics, and improved mismatch negativity and local neural synchronization in chronic schizophrenia. In a recent double-blind randomized placebo-controlled trial by Conus et al., early psychosis patients received NAC add-on therapy (2700 mg/day) for 6 months. Compared with placebo-treated controls, NAC patients showed significant improvements in neurocognition (processing speed) and a reduction of positive symptoms among patients with high peripheral oxidative status. NAC also led to a 23% increase in GSH levels in the medial prefrontal cortex (GSHmPFC) as measured by (1)H magnetic resonance spectroscopy. A subgroup of the patients in this study were also scanned with multimodal MR imaging (spectroscopy, diffusion, and structural) at baseline (prior to NAC/placebo) and after 6 months of add-on treatment. Based on prior translational research, we hypothesized that NAC would protect white matter integrity in the fornix. A group x time interaction indicated a difference in the 6-month evolution of white matter integrity (as measured by generalized fractional anisotropy, gFA) in favor of the NAC group, which showed an 11% increase. The increase in gFA correlated with an increase in GSHmPFC over the same 6-month period. In this secondary study, we suggest that NAC add-on treatment may be a safe and effective way to protect white matter integrity in early psychosis patients

    Cannabis use in early psychosis is associated with reduced glutamate levels in the prefrontal cortex

    Get PDF
    Recent studies have shown that cannabis may disrupt glutamate (Glu) signaling depressing Glu tone in frequent users. Current evidence have also consistently reported lower Glu-levels in various brain regions, particularly in the medial prefrontal cortex (mPFC) of chronic schizophrenia patients, while findings in early psychosis (EP) are not conclusive. Since cannabis may alter Glu synaptic plasticity and its use is a known risk factor for psychosis, studies focusing on Glu signaling in EP with or without a concomitant cannabis-usage seem crucial

    Interaction Testing and Polygenic Risk Scoring to Estimate the Association of Common Genetic Variants with Treatment Resistance in Schizophrenia

    Get PDF
    Importance: About 20% to 30% of people with schizophrenia have psychotic symptoms that do not respond adequately to first-line antipsychotic treatment. This clinical presentation, chronic and highly disabling, is known as treatment-resistant schizophrenia (TRS). The causes of treatment resistance and their relationships with causes underlying schizophrenia are largely unknown. Adequately powered genetic studies of TRS are scarce because of the difficulty in collecting data from well-characterized TRS cohorts. Objective: To examine the genetic architecture of TRS through the reassessment of genetic data from schizophrenia studies and its validation in carefully ascertained clinical samples. Design, Setting, and Participants: Two case-control genome-wide association studies (GWASs) of schizophrenia were performed in which the case samples were defined as individuals with TRS (n = 10501) and individuals with non-TRS (n = 20325). The differences in effect sizes for allelic associations were then determined between both studies, the reasoning being such differences reflect treatment resistance instead of schizophrenia. Genotype data were retrieved from the CLOZUK and Psychiatric Genomics Consortium (PGC) schizophrenia studies. The output was validated using polygenic risk score (PRS) profiling of 2 independent schizophrenia cohorts with TRS and non-TRS: a prevalence sample with 817 individuals (Cardiff Cognition in Schizophrenia [CardiffCOGS]) and an incidence sample with 563 individuals (Genetics Workstream of the Schizophrenia Treatment Resistance and Therapeutic Advances [STRATA-G]). Main Outcomes and Measures: GWAS of treatment resistance in schizophrenia. The results of the GWAS were compared with complex polygenic traits through a genetic correlation approach and were used for PRS analysis on the independent validation cohorts using the same TRS definition. Results: The study included a total of 85490 participants (48635 [56.9%] male) in its GWAS stage and 1380 participants (859 [62.2%] male) in its PRS validation stage. Treatment resistance in schizophrenia emerged as a polygenic trait with detectable heritability (1% to 4%), and several traits related to intelligence and cognition were found to be genetically correlated with it (genetic correlation, 0.41-0.69). PRS analysis in the CardiffCOGS prevalence sample showed a positive association between TRS and a history of taking clozapine (r2 = 2.03%; P =.001), which was replicated in the STRATA-G incidence sample (r2 = 1.09%; P =.04). Conclusions and Relevance: In this GWAS, common genetic variants were differentially associated with TRS, and these associations may have been obscured through the amalgamation of large GWAS samples in previous studies of broadly defined schizophrenia. Findings of this study suggest the validity of meta-analytic approaches for studies on patient outcomes, including treatment resistance

    La sensibilité au mouvement, source d'agentivité et l'intégration de perceptions visuo-kinesthésiques : apports neurocognitifs aux processus de conscience et de différenciation entre soi et autrui

    No full text
    Par l'utilisation de donnĂ©es comportementales et Ă©lectrophysiologiques (EEG), cette thĂšse s'intĂ©resse aux processus perceptifs et neurocognitifs engagĂ©s dans la reconnaissance visuelle d'actions rĂ©alisĂ©es par chacun, Ă  commencer par la locomotion. Sur la base d'animations de points lumineux (paradigme de Johansson), il apparaĂźt plus aisĂ© de reconnaĂźtre ses propres mouvements que d'identifier l'agent de mouvements produits par autrui, malgrĂ© l'importante variabilitĂ© inter-individuelle prĂ©sente dans les compĂ©tences de reconnaissance. Ce qui suggĂšre l'existence de transferts intermodaux entre perceptions visuelles et expĂ©riences kinesthĂ©siques. Cependant, sur le plan comportemental dĂ©jĂ , nous sommes en droit d'interroger la cohĂ©rence des sensibilitĂ©s exprimĂ©es au travers des diffĂ©rentes modalitĂ©s sensorielles. Au niveau cĂ©rĂ©bral, cela revient Ă  comprendre, d'une part, comment les activitĂ©s alpha/mu, bĂȘta et gamma se synchronisent lors de l'intĂ©gration des diverses reprĂ©sentations identitaires ; et, d'autre part, comment les mĂ©canismes neuronaux s'Ă©laborent dans le temps et l'espace en vue de se reconnaĂźtre les uns les autres

    Impact of major and minor mode on EEG frequency range activities of music processing as a function of expertise

    No full text
    Processing western tonal music may yield distinct brain responses depending on the mode of the musical compositions. Although subjective feelings in response to major and minor mode are well described, the underlying brain mechanisms and their development with increasing expertise have not been thoroughly examined. Using high-density electroencephalography, the present study investigated neuronal activities in the frequency domain in response to polyphone musical compositions in major and minor mode in non-musicians, amateurs and experts. During active listening decrease of theta- and gamma-frequency range activities occurred with increasing expertise in right posterior regions, possibly reflecting enhanced processing efficiency. Moreover, minor and major compositions distinctively modulated synchronization of neuronal activities in high frequency ranges (beta and gamma) in frontal regions, with increased activity in response to minor compositions in musicians and in experts in particular. These results suggest that high-frequency electroencephalographic (EEG) activities carry information about musical mode, showing gradual increase of processing efficiency and sensitivity with musical expertise

    Gene set enrichment analysis of pathophysiological pathways highlights oxidative stress in psychosis

    No full text
    Polygenic risk prediction remains an important aim of genetic association studies. Currently, the predictive power of schizophrenia polygenic risk scores (PRSs) is not large enough to allow highly accurate discrimination between cases and controls and thus is not adequate for clinical integration. Since PRSs are rarely used to reveal biological functions or to validate candidate pathways, to fill this gap, we investigated whether their predictive ability could be improved by building genome-wide (GW-PRSs) and pathway-specific PRSs, using distance- or expression quantitative trait loci (eQTLs)- based mapping between genetic variants and genes. We focused on five pathways (glutamate, oxidative stress, GABA/interneurons, neuroimmune/neuroinflammation and myelin) which belong to a critical hub of schizophrenia pathophysiology, centred on redox dysregulation/oxidative stress. Analyses were first performed in the Lausanne Treatment and Early Intervention in Psychosis Program (TIPP) study (n = 340, cases/controls: 208/132), a sample of first-episode of psychosis patients and matched controls, and then validated in an independent study, the epidemiological and longitudinal intervention program of First-Episode Psychosis in Cantabria (PAFIP) (n = 352, 224/128). Our results highlighted two main findings. First, GW-PRSs for schizophrenia were significantly associated with early psychosis status. Second, oxidative stress was the only significantly associated pathway that showed an enrichment in both the TIPP (p = 0.03) and PAFIP samples (p = 0.002), and exclusively when gene-variant linking was done using eQTLs. The results suggest that the predictive accuracy of polygenic risk scores could be improved with the inclusion of information from functional annotations, and through a focus on specific pathways, emphasizing the need to build and study functionally informed risk scores
    corecore