7 research outputs found

    Data for "Predator odours attract other predators creating an olfactory web of information"

    No full text

    Data from: Australian native mammals recognise and respond to alien predators: a meta-analysis

    No full text
    Prey naiveté is a failure to recognise novel predators and thought to cause exaggerated impacts of alien predators on native wildlife. Yet there is equivocal evidence in the literature for native prey naiveté towards aliens. To address this, we conducted a meta-analysis of Australian mammal responses to native and alien predators. Australia has the world’s worst record of extinction and declines of native mammals, largely due to two alien predators introduced some 150 years ago: the feral cat, Felis catus, and European red fox, Vulpes vulpes. Analysis of 94 responses to predator cues show that Australian mammals consistently recognise alien foxes as a predation threat, possibly because of thousands of years experience with another canid predator, the dingo, Canis lupus dingo. We also found consistent recogntion responses towards feral cats, however in 4 of the 7 studies available, these responses were of risk-taking behaviour rather than antipredator behaviour. Our results suggest that a simple failure to recognise alien predators is not behind the ongoing exaggerated impacts of alien predators in Australia. Instead, our results highlight an urgent need to better understand the appropriateness of antipredator responses in prey towards alien predators in order to understand native prey vulnerability

    Negotiating a noisy, information-rich environment in search of cryptic prey : olfactory predators need patchiness in prey cues

    No full text
    Olfactory predator search processes differ fundamentally to those based on vision, particularly when odour cues are deposited rather than airborne or emanating from a point source. When searching for visually cryptic prey that may have moved some distance from a deposited odour cue, cue context and spatial variability are the most likely sources of information about prey location available to an olfactory predator. We tested whether the house mouse (Mus domesticus), a model olfactory predator, would use cue context and spatial variability when searching for buried food items; specifically, we tested the effect of varying cue patchiness, odour strength, and cue-prey association on mouse foraging success. Within mouse- and predator-proof enclosures, we created grids of 100 sand-filled Petri dishes and buried peanut pieces in a set number of these patches to represent visually cryptic 'prey'. By adding peanut oil to selected dishes, we varied the spatial distribution of prey odour relative to the distribution of prey patches in each grid, to reflect different levels of cue patchiness (Experiment 1), odour strength (Experiment 2) and cue-prey association (Experiment 3). We measured the overnight foraging success of individual mice (percentage of searched patches containing prey), as well as their foraging activity (percentage of patches searched), and prey survival (percentage of unsearched prey patches). Mouse foraging success was highest where odour cues were patchy rather than uniform (Experiment 1), and where cues were tightly associated with prey location, rather than randomly or uniformly distributed (Experiment 3). However, when cues at prey patches were ten times stronger than a uniformly distributed weak background odour, mice did not improve their foraging success over that experienced when cues were of uniform strength and distribution (Experiment 2). These results suggest that spatial variability and cue context are important means by which olfactory predators can use deposited odour cues to locate visually cryptic prey. They also indicate that chemical crypsis can disrupt these search processes as effectively as background matching in visually based predator-prey systems.11 page(s

    Risk vs. reward : how predators and prey respond to aging olfactory cues

    No full text
    Many animals use olfaction to find food and avoid predators, and must negotiate environments containing odors of varying compositions, strengths, and ages to distinguish useful cues from background noise. Temporal variation in odor cues (i.e., "freshness") seems an obvious way that animals could distinguish cues, yet there is little experimental evidence for this phenomenon. Fresh cues provide a more reliable indicator of donor presence than aged cues, but we hypothesize that the benefits of responding to aged cues depend on whether the cue indicates the proximity of a predator or a potential meal. As prey cannot remain eternally risk averse in response to predator odor, we predict that antipredator responses should diminish as predator cues age. In contrast, animals searching for food should investigate aged prey cues if investigation costs are sufficiently low and the potential benefit (a meal) sufficiently high; thus, we predict that predators will maintain interest in aged prey cues. We tested these ideas using free-ranging rats (Rattus spp.) in two separate experiments; firstly assessing giving-up densities in the presence of predator odor, and secondly examining investigation rates of prey odors. As predicted, giving-up densities dropped once predator odor had aged, but investigation rates remained similar for aged and fresh prey odor. Thus, rats used temporal variation in odor cues to evaluate the cost-benefit relationship of responding to predator and prey odors. We suggest that the ecological significance of variable cue age needs more research and should be considered when interpreting behavioral responses to olfactory information.11 page(s
    corecore