108 research outputs found

    Protective ankle muscle activation strategies during quick turning movement in humans

    Get PDF
    Paper examining ankle muscle activation patterns and their role in protecting against sprain during quick turning movements

    DNSN-1 recruits GINS for CMG helicase assembly during DNA replication initiation in <i>Caenorhabditis elegans</i>

    Get PDF
    Assembly of the CMG (CDC-45-MCM-2-7-GINS) helicase is the key regulated step during eukaryotic DNA replication initiation. Until now, it was unclear whether metazoa require additional factors that are not present in yeast. In this work, we show that Caenorhabditis elegans DNSN-1, the ortholog of human DONSON, functions during helicase assembly in a complex with MUS-101/TOPBP1. DNSN-1 is required to recruit the GINS complex to chromatin, and a cryo-electron microscopy structure indicates that DNSN-1 positions GINS on the MCM-2-7 helicase motor (comprising the six MCM-2 to MCM-7 proteins), by direct binding of DNSN-1 to GINS and MCM-3, using interfaces that we show are important for initiation and essential for viability. These findings identify DNSN-1 as a missing link in our understanding of DNA replication initiation, suggesting that initiation defects underlie the human disease syndrome that results from DONSON mutations.</p

    Automatic Detection of User Abilities through the SmartAbility Framework

    Get PDF
    This paper presents a proposed smartphone application for the unique SmartAbility Framework that supports interaction with technology for people with reduced physical ability, through focusing on the actions that they can perform independently. The Framework is a culmination of knowledge obtained through previously conducted technology feasibility trials and controlled usability evaluations involving the user community. The Framework is an example of ability-based design that focuses on the abilities of users instead of their disabilities. The paper includes a summary of Versions 1 and 2 of the Framework, including the results of a two-phased validation approach, conducted at the UK Mobility Roadshow and via a focus group of domain experts. A holistic model developed by adapting the House of Quality (HoQ) matrix of the Quality Function Deployment (QFD) approach is also described. A systematic literature review of sensor technologies built into smart devices establishes the capabilities of sensors in the Android and iOS operating systems. The review defines a set of inclusion and exclusion criteria, as well as search terms used to elicit literature from online repositories. The key contribution is the mapping of ability-based sensor technologies onto the Framework, to enable the future implementation of a smartphone application. Through the exploitation of the SmartAbility application, the Framework will increase technology amongst people with reduced physical ability and provide a promotional tool for assistive technology manufacturers

    Global Peak in Atmospheric Radiocarbon Provides a Potential Definition for the Onset of the Anthropocene Epoch in 1965

    Get PDF
    Anthropogenic activity is now recognised as having profoundly and permanently altered the Earth system, suggesting we have entered a human-dominated geological epoch, the ‘Anthropocene’. To formally define the onset of the Anthropocene, a synchronous global signature within geological-forming materials is required. Here we report a series of precisely-dated tree-ring records from Campbell Island (Southern Ocean) that capture peak atmospheric radiocarbon (14C) resulting from Northern Hemisphere-dominated thermonuclear bomb tests during the 1950s and 1960s. The only alien tree on the island, a Sitka spruce (Picea sitchensis), allows us to seasonally-resolve Southern Hemisphere atmospheric 14C, demonstrating the ‘bomb peak’ in this remote and pristine location occurred in the last-quarter of 1965 (October-December), coincident with the broader changes associated with the post-World War II ‘Great Acceleration’ in industrial capacity and consumption. Our findings provide a precisely-resolved potential Global Stratotype Section and Point (GSSP) or ‘golden spike’, marking the onset of the Anthropocene Epoch

    A multi-segment kinematic model of the foot with a novel definition of forefoot motion for use in clinical gait analysis during walking

    No full text
    A multi-segment kinematic model of the foot was developed for use in a gait analysis laboratory. The foot was divided into hindfoot, talus, midfoot and medial and lateral forefoot segments. Six functional joints were defined: ankle and subtalar joints, frontal and transverse plane motions of the hindfoot relative to midfoot, supination/pronation twist of the forefoot relative to midfoot and medial longitudinal arch height-to-length ratio. Twelve asymptomatic subjects were tested during barefoot walking with a six-camera optical stereometric system and auto-reflective markers organized in triads. Repeatability of the joint motions was tested using coefficients of multiple correlation. Ankle and subtalar joint motions and twisting of the forefoot were most repeatable. Hindfoot motions were least repeatable both within-subjects and between-subjects. Hindfoot and forefoot pronation in the frontal plane was found to coincide with dropping of the medial longitudinal arch between early to mid-stance, followed by supination and rising of the arch in late stance and swing phase. This multi-segment foot model addresses an unfortunate shortcoming in current gait analysis practice-the inability to measure motion within the foot. Such measurements are crucial if gait analysis is to remain relevant in the orthopaedic and rehabilitative treatment of the foot and ankle
    corecore