252 research outputs found

    Hysteresis cycle in a turbulent, spherically bounded MHD dynamo model

    Get PDF

    Wave-driven dynamo action in spherical magnetohydrodynamic systems

    Get PDF
    Hydrodynamic and magnetohydrodynamic numerical studies of a mechanically forced two-vortex flow inside a sphere are reported. The simulations are performed in the intermediate regime between the laminar flow and developed turbulence where a hydrodynamic instability is found to generate internal waves with a characteristic m=2 zonal wave number. It is shown that this time-periodic flow acts as a dynamo although snapshots of the flow as well as the mean flow are not dynamos. The magnetic fields' growth rate exhibits resonance effects depending on the wave frequency. Furthermore, a cyclic self-killing and self-recovering dynamo based on the relative alignment of the velocity and magnetic fields is presented. The phenomena are explained in terms of a mixing of non-orthogonal eigenstates of the time dependent linear operator of the magnetic induction equation. The potential relevance of this mechanism to dynamo experiments is discussed.Comment: 11 pages, 13 figure

    Global turbulence simulations of the tokamak edge region with GRILLIX

    Full text link
    Turbulent dynamics in the scrape-off layer (SOL) of magnetic fusion devices is intermittent with large fluctuations in density and pressure. Therefore, a model is required that allows perturbations of similar or even larger magnitude to the time-averaged background value. The fluid-turbulence code GRILLIX is extended to such a global model, which consistently accounts for large variation in plasma parameters. Derived from the drift reduced Braginskii equations, the new GRILLIX model includes electromagnetic and electron-thermal dynamics, retains global parametric dependencies and the Boussinesq approximation is not applied. The penalisation technique is combined with the flux-coordinate independent (FCI) approach [F. Hariri and M. Ottaviani, Comput.Phys.Commun. 184:2419, (2013); A. Stegmeir et al., Comput.Phys.Commun. 198:139, (2016)], which allows to study realistic diverted geometries with X-point(s) and general boundary contours. We characterise results from turbulence simulations and investigate the effect of geometry by comparing simulations in circular geometry with toroidal limiter against realistic diverted geometry at otherwise comparable parameters. Turbulence is found to be intermittent with relative fluctuation levels of up to 40% showing that a global description is indeed important. At the same time via direct comparison, we find that the Boussinesq approximation has only a small quantitative impact in a turbulent environment. In comparison to circular geometry the fluctuations are reduced in diverted geometry, which is related to a different zonal flow structure. Moreover, the fluctuation level has a more complex spatial distribution in diverted geometry. Due to local magnetic shear, which differs fundamentally in circular and diverted geometry, turbulent structures become strongly distorted in the perpendicular direction and are eventually damped away towards the X-point

    Fast transport simulations with higher-fidelity surrogate models for ITER

    Get PDF
    A fast and accurate turbulence transport model based on quasilinear gyrokinetics is developed. The model consists of a set of neural networks trained on a bespoke quasilinear GENE dataset, with a saturation rule calibrated to dedicated nonlinear simulations. The resultant neural network is approximately eight orders of magnitude faster than the original GENE quasilinear calculations. ITER predictions with the new model project a fusion gain in line with ITER targets. While the dataset is currently limited to the ITER baseline regime, this approach illustrates a pathway to develop reduced-order turbulence models both faster and more accurate than the current state-of-the-art

    Direct observation of the turbulent emf and transport of magnetic field in a liquid sodium experiment

    Get PDF
    International audienceFor the first time, we have directly measured the transport of a vector magnetic field by isotropic turbulence in a high Reynolds number liquid metal flow. In analogy with direct measurements of the turbulent Reynolds stress (turbulent viscosity) that governs momentum transport, we have measured the turbulent electromotive force (emf) by simultaneously measuring three components of velocity and magnetic fields, and computed the correlations that lead to mean-field current generation. Furthermore, we show that this turbulent emf tends to oppose and cancel out the local current, acting to increase the effective resistivity of the medium, i.e., it acts as an enhanced magnetic diffusivity. This has important implications for turbulent transport in astrophysical objects, particularly in dynamos and accretion disks
    corecore