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ABSTRACT

A fast and accurate turbulence transport model based on quasilinear gyrokinetics is developed. The model consists of a set of neural
networks trained on a bespoke quasilinear GENE dataset, with a saturation rule calibrated to dedicated nonlinear simulations. The resultant
neural network is approximately eight orders of magnitude faster than the original GENE quasilinear calculations. ITER predictions with the
new model project a fusion gain in line with ITER targets. While the dataset is currently limited to the ITER baseline regime, this approach
illustrates a pathway to develop reduced-order turbulence models both faster and more accurate than the current state-of-the-art.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0136752

I. INTRODUCTION

Accurate predictive modeling of tokamak turbulence is a key
component of multi-physics (integrated) tokamak simulators," which
are applied for physics interpretation of present-day experiments,
and the prediction, optimization, and design of future scenarios and
devices. The gyrokinetic framework has proven to be successful in
quantitatively describing tokamak core turbulence.”” Due to the com-
putational burden in directly applying nonlinear gyrokinetic predic-
tions within integrated modeling, theory-based reduced-order models
have been developed, invoking the quasilinear (QL) assumption, justi-
fied across broad parameter regimes.” The essence of the quasilinear
assumption is that plasma fluctuations in the nonlinear turbulent state
maintain the characteristics of the underlying linear modes, at least at
transport-driving scale lengths. Thus, a wavenumber spectrum of the
turbulent fluxes can be calculated in part by solving the linear disper-
sion relation of the underlying system. The saturated amplitude and
spectral form of the fluctuations arise from nonlinear physics, and
these are captured using a saturation rule in the quasilinear model,
with coefficients calibrated to databases of nonlinear gyrokinetic simu-
lations. However, a quasilinear turbulence model with the linear phys-
ics calculated by high-fidelity gyrokinetic codes is still too slow for
routine application in multiphysics (integrated) tokamak simulation

suites. Therefore, reduced-order quasilinear turbulence models have
been developed, such as TGLF,” QuaLiKiz,"® and the multi-mode
model (MMM),” which approximate gyrokinetic linear solutions and
are approximately six orders of magnitude faster to compute than
nonlinear gyrokinetics, and enable time-dependent integrated model-
ing over multiple energy confinement times on the timescale of hours
or days (depending on case) using moderate compute resources (e.g.,
16 cores at 3.0 GHz). TGLF is a gyrofluid model, comprising of veloc-
ity space moments of the linear gyrokinetic equations, with a closure
designed to approximate the true kinetic response including wave-
particle resonances. QuaLiKiz solves the linear gyrokinetic equation
directly, but with simplifications for increased tractability, such as
pre-computing an approximated eigenfunction from a high-mode-
frequency expansion of the gyrokinetic equation. The MMM is com-
prised of the superposition of disparate models, including the Weiland
fluid model, a drift-resistive-inertial-ballooning mode model, and a
critical-gradient model for electron temperature gradient (ETG)
modes. However, while useful for many applications, the compute
timescale of these reduced models still hampers many-query applica-
tions related to optimization, design, and control.

The development of surrogates of quasilinear turbulent transport
models using machine learning (ML) techniques is a powerful method
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for model acceleration to facilitate such use cases. Supervised learning
models are trained on pre-generated databases of transport model
runs in relevant parameter space. These models, such as neural net-
works (NNs), have sufficient generality to capture the nonlinear inpu-
t-output mapping of the original model. Inference times are orders of
magnitude faster, on the submillisecond scale, opening up applications
such as large-scale validation, uncertainty quantification (UQ), sce-
nario optimization (including inter-shot), controller design, and
machine design.

Following an initial proof-of-principle,'”"" NN surrogates of the
gyrokinetic quasilinear transport model QuaLiKiz were developed for
general,'” and JET-specific'’ input parameters. Recent applications
within integrated modeling include optimization studies for the ITER
hybrid scenario,* JET current ramp-up, ~ and DTT design.'® NN sur-
rogates of TGLE'"'® and MMM’ have also been developed, with
demonstrated applications in core-edge coupled ITER simulations'®
and control-oriented DIII-D modeling.”’ Beyond turbulent transport,
NN models aiming to accelerate integrated modeling were developed
for theory-based'” and data-driven’' pedestal modeling, and neutral
beam heating.”* Additionally, NN surrogates were developed for mag-
netohydrodynamic (MHD) stability within the context of disruption
prediction” and 3D MHD equilibrium.”

While accurate in many standard regimes, the existing reduced-
order turbulence models are not fully validated against higher-fidelity
models across tokamak plasma parameter space. Known challenges
include resistive-drift modes in the L-mode near-edge,”” which may be
important for accurate current ramp-up modeling and first-principle
based L-H transition modeling; kinetic ballooning modes (KBM) in the
inner core,” important for full-profile predictions in MHD-free high-
performance hybrid scenarios; fast-ion-enhanced electromagnetic (EM)
stabilization of ion temperature gradient (ITG) turbulence,” *” impor-
tant for high-performance reactor regimes; inter-ELM (edge localized
mode) turbulence in the pedestal,”” important for prediction of ELM-
free regimes as well as accurate pedestal-top boundary conditions for
density and temperatures; electromagnetic microtearing turbulence,”’
important in high f8, regimes and pedestals; and spherical tokamak tur-
bulence regimes.”” The model deficiencies may be due to fundamental
assumptions inherent to the present implementations of the models, as
well as challenges in setting universally appropriate model parameters.
Furthermore, even in standard regimes, the linear modes calculated by
the reduced-order models are not perfect reproductions of higher-
fidelity gyrokinetic linear solvers.

Continuous refinement of the reduced-order models may further
close the gap to high-fidelity models. However, another approach is to
directly train a surrogate on a higher-fidelity model, whether nonlinear
or quasilinear using a high-fidelity (with respect to linear physics)
gyrokinetic code, taking advantage of the fact that the compute time
required is primarily for training set generation. Provided enough
high-performance computing (HPC) capacity, training sets with suffi-
cient parameter space coverage can be generated using high-fidelity
models not routinely used within integrated modeling, due to their
computational expense. A surrogate trained on the higher-fidelity
model would result in a physics model both faster and more accurate
than current state-of-the-art quasilinear transport models such as
TGLF and QuaLiKiz, dependent on sufficient quality training sets and
appropriate surrogate model training choices. Since, as yet, nonlinear
simulations are too expensive to be the sole source of training set data,
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we propose a multi-fidelity approach. A database of quasilinear trans-
port fluxes is built, based on linear gyrokinetic simulations and a non-
linear saturation rule, calibrated by limited nonlinear simulations
strategically spanning the parameter space. The advantage over
present-day tokamak turbulent transport model NN surrogates is that
the underlying linear modes in the database are calculated with mini-
mal assumptions and are thus the highest achievable fidelity, including
in the challenging regimes listed previously. These calculations, which
are the most computationally expensive component of a quasilinear
model, thus remain relevant for perpetuity and are applicable wher-
ever the quasilinear assumption is valid. The quasilinear model is then
modular in the sense that various saturation rules can be applied to
the linear mode database with minimal computational expense, and
tested in integrated modeling. The saturation rules are expected to
improve and evolve, through both new approaches,™" and the
expanding availability of nonlinear simulations in relevant parameter
space, as we do here.

In this paper, we demonstrate a proof-of-principle of a heat and
particle transport GENE*” quasilinear (QL) NN transport model. We
initially focus on parameters corresponding to the ITER baseline sce-
nario taken from existing QuaLiKiz and TGLF extrapolations of ITER
performance.” Linear GENE runs are carried out based on variations
of input parameters taken from the final state of the integrated model-
ing QuaLiKiz simulation in Ref. 36. Dedicated nonlinear runs at mid-
radius were then carried out, to validate a custom saturation rule
developed for this regime. The resultant QL transport flux database
was then fit with NN models. Finally, the developed GENE-QLNN
surrogate was coupled to the JINTRAC** tokamak simulator, and
the ITER baseline case (By =5.3T,I, =15MA) was rerun.
Therefore, this work also serves as a higher fidelity extrapolation of
ITER performance than presently existing, and a validation test of
reduced-order models in this specific regime.

The approach at hand is similar to the one of the DeKanis proj-
ects,” with a number of differences. Our saturation rule incorporates
multi-spectral information and is tuned to theory-based nonlinear
gyrokinetic simulations instead of being semi-empirical. Furthermore,
our initial application is for ITER extrapolation, which is novel for this
class of high-fidelity surrogate turbulence model. Going forward, both
projects would benefit from shared linear gyrokinetic datasets.

We note that ML techniques can also be used to accelerate high-
fidelity nonlinear gyrokinetic modeling, as illustrated by a recent appli-
cation of Gaussian process regression for iteratively generating local
(in parameter space) surrogate models of a nonlinear gyrokinetic
model to accelerate convergence within a flux-balanced stationary-
state solver.’ This technique is extremely valuable in accelerating
ultra-high-fidelity validation of scenario predictions by a significant
factor. However, since nonlinear simulations are still applied within
the workflow, the computational time is still prohibitively expensive
for time dependent, scenario optimization, and control-oriented
modeling, and thus serves a different use-case.

The rest of this paper is organized as follows. Section II covers
the training set generation, which includes GENE linear runs, QL
model generation with nonlinear runs and saturation rule calibration,
and data filtering. Section III summarizes the NN training pipeline
and surrogate model generation. Implementation within integrated
modeling is discussed in Sec. I'V. Conclusions and outlook are pro-
vided in Sec. V.
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Il. TRAINING SET GENERATION

All linear instability calculations were carried out with the GENE
gyrokinetic model. GENE is a Eulerian gyrokinetic code, evolving the
perturbed particle distribution functions self-consistently with the
Maxwell field equations. GENE works in field aligned coordinates,
where x is the radial coordinate, z the parallel coordinate along the
field line, and y the binormal coordinate. All shown simulations are
spectral in both the x and y directions.

The input parameters for the GENE linear dataset were based on
the final stationary state of the JINTRAC-QuaLiKiz ITER baseline
simulation from Ref. 36. These simulation results, together with the
analogous JINTRAC-TGLF simulations, are reproduced for conve-
nience in Fig. 1. The average fusion gain predicted by the models is
Q ~ 9.5, in line with ITER goals.

Eight radial locations were chosen for sampling linear gyrokinetic
inputs, ranging from normalized toroidal flux coordinate pyy = 0.2 to
py = 0.9, in steps of 0.1. The normalized toroidal flux coordinate is
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FIG. 1.ITER baseline modeling with TGYRO-TGLF-SATO (dotted curves),
TGYRO-TGLF-SAT1 (dashed curves), and JINTRAC-QuaLiKiz (solid curves). With
a pedestal boundary condition at p,,, = 0.93, predictions are for T (upper panel),

T; (middle pane) and n, (lower panel). The pedestal boundary condition is consis-
tent with EPED"" pedestal stability predictions. Figure reproduced with permission
from Mantica et al., PIasma Phys. Controlled Fusion 62, 014021 (2019). Copyright
2019 Institute of Phy3|cs

pubs.aip.org/aip/pop

237) ) where ®(r) is the toroidal flux within

radius r, a is the tokamak minor radius, and B, is the toroidal magnetic
field at the geometric magnetic axis. This choice was justified as fol-
lows: the outer radius is in the vicinity of the pedestal-top boundary
condition applied in H-mode core integrated modeling; the inner
radius is in the vicinity of the region where within, no instabilities are
typically predicted in integrated modeling applications due to a combi-
nation of non-negligible ion neoclassical transport, and a reduction of
TEM drive due to the proportionality of trapped electron fraction with
normalized radius r/a, which is typically within a few percent of py:
On the stability of the inner radial region, exceptions have been
reported in electromagnetic (EM) simulations.”® However, as will be
elucidated further in Sec. IT A, EM simulations are out of the scope of
this study. External [e.g., from neutral beam injection (NBI) torque]
perpendicular flow shear (E x B rotation shear) effects were also not
included in this study. Its direct impact on the linear modes is difficult
to assess for large-scale automated run generation due to the non-
stationarity of the solutions that rotation induces, resulting in an
involved analysis procedure that is technically challenging to auto-
mate.”” While a model of the direct impact of E x B shear on the fluxes
is feasible to implement for the NN surrogate, as done in Ref. 12, it
was not implemented in this work, motivated by the moderate impact
of E x B shear expected for the ITER baseline scenario according to
TGLE-SAT! simulations.”” The lack of both stabilizing EM and E x B
effects means that the results obtained with our NN surrogate in Sec.
IV are conservative. The impact of fast ions on the turbulence is also
not included due to computational expense, even though their impact
may be stabilizing,**

The original ITER simulation contained six ion species. For com-
putational efficiency, we make a bundled ion assumption. The main
ions (deuterium and tritium) are combined into a single effective ion.
All impurities are bundled into a single effective impurity, with param-
eter choices that mimic the impact of all impurities. For further details
and justification, see Appendix A.

In Table I, the main dimensionless parameters relevant for gyro-
kinetic simulation input, at each sampled radial location, are listed.
The list is partial, and for brevity does not include collisionality and
flux surface shaping parameters, although these parameters are
included in the calculations themselves. Collisionality is calculated
using reference temperatures and densities observable in Fig. 1 and
modeled using a linearized Landau-Boltzmann operator. Flux surface
shaping is calculated with Miller parameterization”” and arises from
Grad-Shafranov 2D MHD equilibrium calculations carried out in the
integrated modeling simulation, using the standard ITER boundary
shape with elongation kg5 ~ 1.7 and triangularity dgs =~ 0.4.

defined as py = %?/

A. GENE linear runs

The gyrokinetic inputs for the NN training set are sampled from
variations of the parameters listed in Table I. Since the intent is to
apply the resultant transport model within integrated modeling for
current, heat, and particle transport, deviations of the predicted plasma
profiles in the subsequent simulation, away from these nominal
parameters, are expected. Thus, to avoid NN extrapolation by ensuring
that all predictions are encapsulated within the training set envelope, a
training set was generated with, at each radial location, a five-point
scan of R/Ly;, R/Lr., and R/L,.. For each variable, variations of
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TABLE 1. List of main dimensionless input parameters for the GENE linear runs,
based on a JINTRAC-QuaLiKiz ITER simulation, for all sampled normalized toroidal
flux coordinates py. R/Lri = —R VTT', where R is the tokamak major radius, and T;
the ion temperature. R/L7e, R/Lne, and R/Lyimp are the analogous normalized loga-
rithmic gradients of the electron temperature, electron density, and bundled impurity
density, respectively. q is the magnetic pitch angle (safety factor), § is the magnetic
shear related to the derivative of the pitch angle. oyup = —R¢?f3', where 8 is the
radial derivative of the plasma beta (ratio of kinetic to magnetic pressure), and is
related to the Shafranov shift of the flux surfaces. Zg is the effective ion charge
P %Z,Z and T;/ T, is the ion to electron temperature ratio.

PN R/LTi R/LTe R/Lne s q OMHD R/Lnimp Zeff Ti/Te

02 454 222 012 0.16 095 0.28 0.9 1.87 0.82
03 468 361 030 012 1.01 0.33 1.05 1.84 0.76
04 440 570 1.06 039 1.09 045 240 176 0.76
05 463 717 197 085 1.23 0.56 559 171 0.82
06 553 757 213 126 148 0.64 6.30 1.67 0.89
07 58 748 252 1.63 180 0.77 347 1.62 094
08 64 749 494 224 221 111 13.65 1.62 0.99
09 956 897 732 370 283 195 11.06 1.63 1.01

+15% and *30% were carried out. Three-point scans of § and g with
+15% were also carried out, leading to a total of 1125 calculations for
each wavenumber at each radial location. All other dimensionless
parameters were kept fixed in these scans, corresponding to their nom-
inal values at each radial location, and are not inputs into the NN sur-
rogate model. We denote this initial scan as Phase 1. Subsequent
integrated modeling simulations with the NN model constructed from
Phase 1 found this initial scan to be insufficient for capturing the
entirety of the resultant predicted parameter space, leading to spurious
results. Namely, low R/Ly;, R/Ly, in a specific radial zone was pre-
dicted by the transport equations, outside the Phase 1 data boundaries,
leading to NN extrapolation with incorrect trends, triggering a physi-
cally incorrect feedback mechanism where even lower R/Ly;, R/Lr,
was predicted. Thus, in a Phase 2 of the run generation, additional
scans were carried out at nominal § and g, but with increased sampling
at low logarithmic gradients, at factors 0.5 and 0.1 of the nominal
R/Ly, R/Ly,, and R/Ly,, respectively. Such a multi-step approach is
also relevant for the general case of surrogate model generation, where
a metric of model trustworthiness during application should be fed
back into the training set generation pipeline for subsequent model
refinement. Sections 1B, III, and IV, of quasilinear model generation
(Sec. TIB), NN model generation (Sec. III), and integrated modeling
(Sec. 1V) include data of both Phase 1 and 2. The impact of only
including Phase 1 data is shown in Appendix B.

A wider range of sampling around additional input dimensions is
desirable. However, considering the computational expense (1-5 CPU
h per linear calculation, defined as computational wall-time multiplied
by the number of CPUs in the calculation) and technical challenges of
setting up the required automated run generation and analysis pipe-
lines for larger-scale parameter scans, this initial GENE quasilinear
NN (QLNN) model is limited to the aforementioned input dimensions
and the ITER baseline regime.

Linear simulations for nine wavenumbers at ion-Larmor-radius
scalelengths were carried out, at normalized wavenumbers ko, =[0.1,
0.15, 0.2, 0.25, 0.325, 0.4, 0.5, 0.7, 1.0] (henceforth abbreviated as ky),

ARTICLE pubs.aip.org/aip/pop

with the reference Larmor radius p, = —ngBmD. T, is the electron tem-

perature, mp, is the deuterium mass, g, is the electron charge, and B is
the reference magnetic field at the tokamak magnetic axis. Electron-
Larmor-radius scalelengths were deemed unnecessary to include since
electron temperature gradient modes (ETG) have been predicted to be
subdominant in the ITER regime with T, > T}, which increases ETG
critical thresholds.”” However, direct multiscale simulation of the
ITER regime is still necessary to fully answer this question. Studies
focusing on electron heated regimes have also predicted scenarios,
where multiscale interactions become important, even potentially
improving confinement.°

All simulations carried out were electrostatic (ES), meaning that
magnetic field fluctuations are neglected by setting f# ~ 0. The mag-
netic geometry agp parameter was still set according to the nominal
B'. The ES assumption is conservative, since for the f < 2% values
typical of the ITER baseline scenario, EM modes are not expected to
be destabilized in the plasma core (with the possible exception of the
magnetic axis region™), while EM stabilization of ITG turbulence is
expected to contribute to improved confinement and is further
enhanced by energetic ion species induced by fusion reactions and the
neutral beam injection (NBI) system, neither of which is included in
this study.””*” " Finite f simulations have a greater computational
burden, and more challenging numerical convergence and automated
mode convergence properties, less conducive for automated large-
scale run generation as carried out here. Therefore, the generalization
to finite-f is left for future work.

In total, for both Phase 1 and Phase 2, approximately 100 000 lin-
ear instability calculations were carried out (81000 in Phase 1 and
15696 in Phase 2). All calculations were initial value (IV) simulations,
whereby following an initial transient phase, the simulation becomes
dominated by the fastest (exponentially) growing mode when an insta-
bility is present, or conversely by the slowest (exponentially) decaying
mode when no instability is present. Ideally, the GENE convergence
monitoring routine returns either a finite mode growth rate and fre-
quency for the unstable modes, or a zero growth rate when no instabil-
ity is present. For the unstable modes, all necessary mode
characteristics for quasilinear model generation, such as mode spatial
structure and transport fluxes, are obtained from the final state of the
IV simulation. All runs were carried out on Google Cloud infrastruc-
ture, with pipelines constructed for scan generation, run monitoring,
result retrieval, and data reduction to the minimum required for gen-
erating a quasilinear model and transport flux database.
Configurations where all wavenumbers are stable contribute to a zero-
flux (stable) point in the transport flux database. As described in Sec.
111, these stable points are important for capturing sharp critical-
gradient thresholds in the resultant NN model. Since the GENE con-
vergence monitoring routine does not always identify stable modes, a
post-processing tool was developed to identify stable regions and sup-
plement the transport flux database, as described in Sec. 11 B 3.

Numerical convergence, with respect to phase space grid resolu-
tion, was determined through dedicated convergence checks on a ran-
domly sampled ~1% of the parameter configurations (including
wavenumber) at each radial location. Starting from standard grid reso-
lution settings, the grid in each dimension was refined until growth
rate convergence was observed. The final grid resolution required at
each radial location is displayed in Table II. The trends are as expected:
at lower radii, the modes tend to be less strongly driven, and thus,
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TABLE II. Numerical GENE grid resolution for the generated linear dataset. The
same resolution is applied for all binormal k, wavenumbers at a given radial location.
Nk is the number of radial modes, n, is the number of parallel (along the B-field) grid
points, n,, is the number of perpendicular velocity grid points (magnetic moments),
and n, is the number of parallel velocity grid points.

PN Mixe n, My, n,
0.2 25 24 16 48
0.3 25 16 16 32
0.4 25 16 16 32
0.5 17 16 12 32
0.6 17 16 12 32
0.7 17 16 12 32
0.8 17 16 12 32
0.9 17 64 12 32

higher grid resolution tends to be necessary for a given relative tolerance,
together with the fact that more radial modes are necessary at low mag-
netic shear, reflecting the tendency of modes at low magnetic shear to
be less localized in ballooning space. At the larger radius, n, (parallel)
resolution needs to be higher since there is relatively more variation of
magnetic geometry parameters along the field line at that position. Note
that all radial wavenumbers considered are coupled to each other
through the twist-and-shift parallel boundary condition.”" At the low-
field-side midplane, zero ballooning angle (k, = 0) is imposed.

a)
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A typical example of mode spectra and transport flux ratios, as
needed for quasilinear model generation, is shown in Fig. 2. Linear
mode eigenvalues (EVs) (growth rate and frequency) and flux ratios per
mode are shown for a scan of R/Ly; at pyy = 0.6. In the GENE conven-
tion, positive frequencies correspond to modes propagating in the ion
diamagnetic direction, which are ITG modes in this case. Negative fre-
quencies correspond to modes propagating in the electron diamagnetic
direction, TEMs in this case. Typical of electron heated ITER cases, the
mode landscape is comprised of a combination of ITG and TEM
modes. TEM is more prevalent at lower R/Ly; values in the scan and at
higher k,, as observable from the negative mode frequencies and heat
flux ratio Q;/Q, < 1. Interestingly, there is significant variation in the
particle flux in the scan, including transitions from inward to outward
transport. This is an indication that particularly in this regime, it is criti-
cal for the quasilinear flux model to match the nonlinear flux k, spec-
trum, since this has significant impact on particle transport and hence
the predicted density peaking. This will be further discussed in Sec. 11 B.

Only the fastest growing mode is calculated with the IV solver.
However, subdominant modes are likely present in this regime, i.e.,
subdominant TEM when ITG is dominant, and vice versa. Ideally, for
a more accurate quasilinear model, these subdominant modes would
also be calculated using an eigenvalue (EV) solver in lieu of the IV
solver. However, tailoring the EV solver preconditioner across wide
parameter space is a complex problem in automated workflows.
Therefore, this aspect is left for future work.

Another caveat is the robustness of the GENE convergence mon-
itoring routine. Particularly for slowly growing modes just above the
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(b)
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'Q—:' 0.25 4
= ITG
& 0.00
'§' TEM
—0.25 A
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FIG. 2. Linear mode spectra and flux ratios, for a typical R/Ly; scan at py = 0.6, with R/L7e=7.57, R/Lse =2.13, g = 1.48, and § = 1.26. Growth rates (a), mode frequency
(b), ion to electron heat flux ratio per mode (c), and electron particle flux to electron heat flux (d) are shown for various values of R/Ly;. Positive frequencies correspond to ITG

modes, and negative frequencies to TEMs.
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instability critical thresholds, as well as for stable modes, there are
cases where the GENE IV solver does not converge to a stationary
solution within the allotted time allocation. While partially mitigated
through increasing runtime allocations and reducing the convergence
criteria, such cases are still evident in our dataset. While for smaller
studies, these cases can be resolved through deeper analysis on an indi-
vidual basis, this is impractical for large-scale studies with automated
pipelines. An example is shown in Fig. 3, for an R/L7; scan around a
parameter configuration at py; = 0.3, which is characterized by weakly
growing modes. The spectrum at R/Ly; = 4.68 likely has a “missing”
mode at lower k,, due to non-convergence of the solver in this particu-
lar case. Since lower k,, is linked with larger transport fluxes (larger
fluctuation wavelengths), these missing modes can cause discontinu-
ities in parameter regions near critical thresholds. The ramifications of
this data imperfection are further discussed in Sec. I1I.

B. Quasilinear model training set generation

Using the linear mode dataset, quasilinear fluxes are constructed
with the aid of a saturation rule and GENE nonlinear simulations car-
ried out in the ITER baseline regime. Following the quasilinear dataset
generation, outliers were filtered (due to aforementioned discontinu-
ities) and the dataset was supplemented with zero flux datapoints (sta-
ble modes), which also form part of the NN training set.

1. Dedicated nonlinear simulations

To calibrate the saturation rule in the specific ITER baseline tur-
bulence regime, dedicated GENE nonlinear simulations were carried
out on the Marconi HPC cluster. Two separate R/Ly; scans were
made, for the parameters corresponding to py = 0.5. The first R/Ly;
scan was with the nominal parameters from Table I. The second scan
was the same apart from R/Ly, and R/L,, reduced by 30%, to enter a
more ITG dominant regime. Simulation box size and grid convergence
were verified through dedicated checks with increased box size and

ARTICLE pubs.aip.org/aip/pop

resolution. The applied perpendicular box sizes were [Ly,L,]
~ (135, 125] in units of GENE reference Larmor radius (which is close
to the ion Larmor radius), with [ng, ni,] = [192,32] perpendicular
wavenumbers. n, =18 for the parallel grid resolution and [n,,n,]
= [32, 12] velocity grid points were used. For context, the reference
Larmor radius at pyy = 0.5 is =3 mm in expected ITER conditions.

The ion and electron heat fluxes from the nonlinear simulations
are shown in Fig. 4. While the simulation uses dimensionless quanti-
ties, the output fluxes in the figure are converted to physical SI units
using the ITER reference dimensional quantities at py = 0.5 with
Tiet = Te and nf = e, taken from the JINTRAC-QuaLiKiz simula-
tion. For physical context, the ITER heat flux at pyy = 0.5 from the
integrated modeling simulation was Q; A~ 200kW/m? and
Q. ~ 100 kW /m?, indicating that the stationary state is found in the
vicinity of the turbulence thresholds.

As elucidated in Sec. I1B 2, the nonlinear simulation heat fluxes,
as well as more detailed information such as the wavenumber spec-
trum of the saturated electrostatic potential [0¢p(k;) |, are used to con-
strain the quasilinear saturation rule.

2. Saturation rule

The applied saturation rule is a variation of the QuaLiKiz satura-
tion model.”””” The differences are that we calibrate the model with
specific nonlinear simulations carried out in our relatively narrow
parameter space of interest, and also include a zonal flow mode sup-
pression rule, needed to capture the correct | 3¢, |* spectral shape from
the nonlinear simulations, where k denotes the binormal wavenumber
k,. We summarize the model briefly.

Key quantities obtained from the linear simulations are mode
growth rates y;, mode frequencies wy, parallel mode structure ¢ (z)
(with arbitrary normalization), and spatially averaged (local to a flux
surface) transport fluxes. In our case, the transport fluxes per wave-
number are the ion heat flux Q, , electron heat flux Q,, and electron
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FIG. 3. Linear mode spectra for a R/Ly; scan at py = 0.3, with R/L7e =3.61, R/Lpe =0.3, = 1.01, and § = 0.12. Growth rates (a) and mode frequency (b) are shown for

various values of R/Ly;.
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FIG. 4. lon and electron heat flux from nonlinear GENE R/Ly; scans, with non-R/Ly; input parameters corresponding to py, = 0.5 (see Table |). Panel (a) corresponds to
nominal parameters, while panel (b) has R/L7. and R/Lye reduced by 30% and is in a more dominant ITG regime with Q; > Q. throughout the scan.

particle flux T ¢k- The fluxes, which in the linear simulation exponen-
tially grow, are normalized to the (similarly growing) electrostatic
potential |¢;|* to provide a constant value. The bar over the fluxes
denotes the normalization and spatiotemporal averaging. The quasi-
linear fluxes are thus defined as the following mode summation:

[Qi, Qe’ Fe} = zk‘¢sat1k|2 [Qi,kv Qetkv 17—‘e,k] . (1)

The k, spectrum in the summation corresponds to all unstable modes
for a §iven parameter configuration (variables listed in Table I).
|suel” is the modeled saturated potential, calibrated to match the
nonlinear simulations. The saturated potential model is

I )‘“
. )
max kmux (kmax

Kppax is the modeled peak of the |¢b,,, ¢|* spectrum, calculated as the k,
) ;:zjﬁ

Ve
K

2
| d)sat,k ‘ =Cn

corresponding to the maximum 5% in the instability spectrum, where

’Yk,eff = max(O, Ve — a)ZF)7

3
wgzr = fmax(y;), fork, < 0.5. ®

Wy is motivated by the effective E x B velocity shear rate due to zonal
flows’ and treated here as being proportional to the linear growth rate
at the transport driving wavenumbers. This model was necessary for
obtaining the saturated potential k; ;uax in agreement with nonlinear
simulations. « and f are free parameters calibrated to the nonlinear
simulations, such that the saturation rule predicted |¢|* spectra
match the |¢;|” spectra from the nonlinear simulations. This proce-
dure was carried out by eye, feasible due to the small number of cases.
However, for fitting a saturation rule to a more extensive set of nonlin-
ear simulations, needed for a more general quasilinear model across
parameter space, a more principled weighted optimization routine
must be developed. & = —2.25 for k, > Kyay, o0 = 1.5 for ky < ks,
and § = 0.5. ,ﬁ—zk |,ax 18 calculated at k,,,,,. Note that this means that

2 | 18 constant in the mode summation in Eq. (1), meaning that
L

effectively only an instability at a single wavenumber (k,,,,) contrib-
utes to the saturated potential for each spectrum in configuration
space. However, all instabilities still contribute to the total flux through
the k-dependent transport fluxes, which is the second term in Eq. (1).
Also note that the k, < 0.5 cutoff of the effective zonal flow shear rate
implies that any instability threshold shift is likely insignificant, since
the linear instability spectra tend to peak in the k;, ~ 0.5 region. Cy; is
a constant parameter, calibrated such that the model ion heat flux
matches the nonlinear simulation at p = 0.5 with nominal parame-
ters apart from R/Ly; = 6.02. Finally, k% is the square of the perpen-
dicular wavenumber conceptually split as k% = &% 400 + K% oiinear-
GENE linear mode output provides k% ;... which depends on k,,
geometric metric coefficients, and spatial mode structure, based on a
generalized form of Eq. (4) in Ref. 53. k% .. is a modeled nonlin-
ear contribution, motivated by zonal flow shearing of radial mode
structures, and is based on Eq. (5) of Ref. 54.

Validation of the saturation rule |¢;|* spectral model is shown in
Fig. 5. |¢y|* spectra, averaged over k,, are shown for four of the non-
linear simulations, and compared to the modeled |¢;|* in the satura-
tion rule. All spectra are normalized to a maximum amplitude of
unity, such that the spectral peaks and locations can be more easily
compared. General agreement is observed for the spectral peak loca-
tion (k,,,4y) as well as the spectral shape. Exact correspondence between
the spectral peaks cannot be expected due to the limited spectral reso-
lution of the quasilinear model (nine wavenumbers). The worst agree-
ment for the spectral shape is for the R/Ly; = 4.63, R/Ly, = 7.17,
R/L,, = 1.97 case (top left panel), which is in a TEM regime. The nar-
row spectral shape in the nonlinear TEM simulation is reminiscent of
toroidal mode condensation in TEM turbulence, as previously
observed.”” While the o and f§ parameters in the saturation rule are
similar in absolute value to the comparable saturation rules in Refs. 5
and 56, the generality of the calibrated values cannot be claimed, since
they would need to be compared to a wider variety of nonlinear simu-
lations. Any generalization of this specific quasilinear model beyond
the ITER baseline regime demands a generalization of the saturation
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rule calibration, likely introducing further parameter dependencies differences between nonlinear and quasilinear particle transport, as
into the spectral model. previously reported,” or the saturation rule. Regardless, at lower
The comparison between the quasilinear and nonlinear fluxes is R/L7; closer to the physical heat flux values, the deviations are more
shown in Fig. 6, for all nonlinear simulations carried out in this study. minor. The fluxes are gyroBohm normalized, which for the reference
Close correspondence between the heat fluxes is found, even for non- values taken for this study implies that for conversion to SI units, the
trivial phenomena such as the TEM-ITG transition observed in the heat fluxes are multiplied by Qgz = nﬂ];e; z:lz?’s’ and the particle fluxes by
upper row with R/Ly, = 7.17. Note that the flux correspondence is S %
close even for the R/Ly; =4.63 case, which corresponded to the worst Lep = SR GyroBohm normalization maintains the natural scal-
agreement in spectral shape, indicating robustness of the spectral ings of the local gyrokinetic system; the quasilinear training set and
shape model. Regarding particle transport, non-trivial phenomena subsequent surrogate model NN are gyroBohm normalized, with
such as the transition from positive to negative flux are reproduced by denormalization to SI units occurring in the transport simulation
the quasilinear model. Particularly at high R/Ly;, a deviation is itself.
observed in the particle fluxes, with the nonlinear fluxes systematically The saturation rule was also carried out for ITG modes and

more negative. It is uncertain whether this is due to fundamental TEMs separately, by including all modes for the k,,,,, calculation but
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isolating ITG and TEM in Eq. (1) summation. The training set was
populated with these separate flux contributions, and the NN trained
for ITG and TEM separately. In applications, the fluxes of the separate
modes are added to the total flux. As discussed in Ref. 12, this is neces-
sary for cleanly capturing critical thresholds in the NN regression.

3. Data filtering and stable region supplementation

Additional post-processing was necessary for the final training
set applied for NN model generation, due to the aforementioned chal-
lenges with convergence monitoring. All individual datapoints that
were non-monotonic in Q; with increasing R/Ly; (for ITG) or non-
monotonic in Q, with increasing R/Ly, (for TEM) were removed
from the dataset. These points were assumed to arise due to non-
convergence of low k, modes in that specific spectrum, leading to
unphysical discontinuities in the gradient-flux response. By non-
monotonic, we mean lower in absolute Q; (for ITG) or Q, (for TEM)
flux compared to the adjacent datapoint lower in the driving gradient
scan, leading to that single datapoint to be removed. In addition,
numerous stable points (zero fluxes) were not present in the dataset
due to non-convergence of stable modes and thus inconclusive data.
Zero flux data were supplemented by identifying datapoints where no
data were received from the run generation pipeline, and checking
whether any converged non-zero fluxes were present at lower R/Lr;,
R/Ly,, or R/Ly,. If not, then that parameter configuration was identi-
fied as stable and the training set was supplemented by setting that
datapoint as zero flux. If so, then due to the inconclusiveness, the data-
point was not included in the training set. Following filtering, approxi-
mately 2000 points were removed, corresponding to ~20% of the
quasilinear flux dataset. The total dataset size following both filtering
and data imputation is 9449 entries per transport flux.

IlIl. NEURAL NETWORK MODEL TRAINING
AND VALIDATION

The NN training follows similar methodology as the QuaLiKiz-
neural-network (QLKNN), outlined in Refs. 12 and 13. We summarize
below.

The model architecture consists of fully connected feedforward
neural networks (FFNN), with three or four (depending on specific
label) hidden layers of 128 nodes each, and a tanh activation function
for all nodes at each hidden layer. The input features are py, $, g,
R/Lyi, R/Ly, and R/L,,. A total of six NNs were trained, each corre-
sponding to a separate output label. In practice, training a single NN
for each output label led to better regression accuracy compared to
training multiple-output NNs. The labels correspond to two “leading
flux” labels Q;rr¢ (A) and Q. rev (B), and four “division” labels,
Qerr/Qirre (C), Terrg/Qimre (D), Qirem/Qerem (E), and
I. 77/ Qe 7em (F). The leading flux networks (A) and (B) are charac-
terized by sharp critical gradient threshold with respect to R/Ly; or
R/Lr,, respectively. Outputs of a leading flux and division networks
are multiplied in post-processing to provide the full set of fluxes. For
example, Q. 7 arises from multiplying outputs of networks (A) and
(C). This structure instills a physics-aware approach, which ensures
that all transport fluxes of a given mode class share identical critical
gradient thresholds, important for accuracy in integrated modeling.
See Fig. 6 in Ref. 12 for the consequences of applying a physics-
unaware neural network model. All features and labels are normalized
for training to mean 0 and std 1, using a normal distribution.

pubs.aip.org/aip/pop

For the division networks, only labels corresponding to unstable
modes (with leading flux larger than zero) were provided in training.
There, the optimization cost function was mean squared error (MSE)
with L2 regularization. However, for the leading flux networks them-
selves, both stable and unstable modes were included. The leading flux
optimization cost function then included a custom provision in the
loss term to capture the prior knowledge of sharp discontinuous criti-
cal gradient thresholds as follows:

Cpenulty = Cust + Cstan,

Cuse = (ytarget 7ypred)27 ifytarget >0, (4)
Catap = )~staby;md» ifytarget =0, andypred > 0.
Cpenalty is the loss term per point. Cygp; is the MSE penalty term, but
only evaluated for unstable target fluxes. Cyyp, is @ penalty term only
applied for stable flux targets, and when positive fluxes are erroneously
predicted by the NN model. In post-processing, leading fluxes pre-
dicted negative by the model are then clipped to zero. This construct
provides sharp critical gradient thresholds in spite of the L2
regularization.

Training was carried out with Adam optimization with a learning
rate of 0.001, f; = 0.9, f, = 0.999, and a 80-10-10 split between
training, validation, and test data. Early stopping criteria were applied
on the validation set, with a patience of 100 epochs. L2 regularization
hyperparameters, number of layers, and layer size were optimized by
hand based on visual inspection of model performance across ran-
domized 1D scans of R/Ly;, R/Lr., and R/L,, throughout the data
set. A summary of model architecture and hyperparameters is shown
in Table I11. The Keras library was used for training.”®

Demonstration of model performance is shown in Fig. 7, com-
prising of scatter plots comparing test set values with model predic-
tions for ion heat flux, electron heat flux, and electron particle
transport. Total fluxes are shown, combining the ITG and TEM fluxes.
The model predictions thus arise from combining several NNs.
Following the labeling in Table III: Qpy = A+ B-E, Q. =B+ A -C,
and I, = A - D+ B - F. Model performance in a 1D logarithmic ion
temperature gradient scan is shown in Fig. 8, for the same case at
py = 0.5 as in the top row of Fig. 6. Reproduction of salient structural
features of the ion temperature gradient to turbulent flux relation is
evident. This includes sharp ITG critical thresholds, and non-
monotonic electron heat flux due to the TEM to ITG transition. While
the zero-flux crossing is reproduced well, the NN particle flux predic-
tion deviates from the GENE labels at higher R/Lr;. This is due to
inherent discontinuous structures in the data caused by either mode
convergence issues or saturation rule k., discontinuities, which has
more of an impact on the smoothness of the particle flux data, since
particle flux per mode can be positive or negative, potentially leading
to a loss of local monotonicity. The NN model regularization provides
smoothing in the multidimensional space, reducing the impact of
these discontinuities, which also contribute to the deviations evident
in Fig. 7.

Furthermore, insight is gained through a 2D parameter scan,
shown in Fig. 9, for TEM electron heat flux at pyy = 0.7. The figure
illustrates that in spite of complex 2D structure of the gradient-flux
relationship, the key component of capturing the discontinuous criti-
cal thresholds is successfully carried out. Nevertheless, note that two
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TABLE lIl. Summary table of network architecture and hyperparameter values for the 6 separate NNs trained in this work. Ly, is defined in Eq. (4) describing the custom cost

function applied for the “leading flux” NNs (A) and (B).

NN label Number of hidden layers ~ Activation function = Nodes per hidden layer 12 Batch size  Patience Ay,
Qirrg (A) 3 tanh 128 1x10* 32 100 0.2
Qe7em (B) 3 tanh 128 2x107* 32 100 0.2
Qe.rr6/Qirre (C) 3 tanh 128 5x10°* 32 100 N/A
Terr6/Qirre (D) 4 tanh 128 3x10°* 32 100 N/A
Qi‘TEM/Qe,TEM (E) 3 tanh 128 1x10°* 32 100 N/A
FerTEM/Qe_,TEM (F) 3 tanh 128 1 x 10_4 32 100 N/A
50 30 6
E 404 - = 25+ ~ .
§ 40 . 9 [y 4 . .
oo 0] i o 0 o
.é 30 | . .. .... é 20 ° -". ' '§ ::..'J -
2 g 3 151 w0 2 2 g
@ 201 -ch @ -~ @ : 1S
s e 4 a Y a e
T Y g 101 . 33 | g | . .
o * 0%, LIS
0 . . : . 0 . . : . . -2 . . .
0 10 20 30 40 50 0 5 10 15 20 25 30 -2 0 2 4 6

Test set values [Qpr]

Test set values [Q.]

Test set values []

FIG. 7. Comparison between the neural network predictions (y-axis) and test set values (x-axis) drawn from the GENE quasilinear flux database, for ion heat flux (left panel),
electron heat flux (center panel), and electron particle flux (right panel), all normalized to gyroBohm units.
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FIG. 8. Comparison between the neural network model (red) and target labels from the GENE quasilinear flux database (blue) for ion heat flux, electron heat flux, and electron
particle flux, all normalized to gyroBohm units. No distinction is made in the GENE data shown here, between the training, validation, and test sets used for the neural network

training itself.

false positives (Qnn > 0 while Quuse: = 0) are evident in the top row,
where the structure is the most complex.

Performance metrics for the NN models are shown in Table IV,
comparing NN output with the full original dataset. The average absolute
error is compared with the average values of each flux. This metric was
chosen, as opposed to relative mean square error, to avoid overly weight-
ing the impact of errors near critical threshold where absolute error mat-
ter less, due to high transport stiffness, and for zero particle flux (which

is not necessarily tied to the critical threshold). The relatively larger error
for the particle flux likely arises from both the inherent increased nonlin-
earity of the particle flux dataset, as well as the propagation of errors in
the multiple networks used in the calculation (particle flux is never a
leading flux). A degree of error is also always expected due to the regular-
ization, which smooths over irregularities in the data. In addition, the R*
scores for the test set are shown, where a similar pattern emerges show-
ing larger errors for the electron heat and particle fluxes.
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FIG. 9. Comparison between NN model (contour plot) and the GENE quasilinear
dataset (discrete points) for TEM electron heat flux (gyroBohm normalized), varying
both R/Lr and R/Lye, the two main driving gradients of TEM instabilities. White
points belong to the test set, and the rest to the training and validation sets. The
information from the points corresponding to the GENE database is reduced to
whether the point is stable (crosses) or unstable (circles). This is to more easily dis-
cern the agreement with the critical threshold behavior.

Finally, a metric for “mislabeling” of the output is provided.
Namely, the percentage out of all stable (zero) fluxes in the dataset,
where the NNs predict non-zero fluxes (spurious flux ratio), and the
percentage out of all unstable fluxes where the NN predicts stability
(spurious stable ratio). As with the absolute error metrics, a degree of
mislabeling can be expected due to the regularization and data irregu-
larities. The average flux value of the spurious flux points is 0.39 in
gyroBohm units, which is low, signifying that these are likely mostly
close to the critical thresholds in practice.

In summary, the trained models are deemed a satisfactory repre-
sentation of the GENE-QL dataset. The model was then coupled to an
integrated modeling suite for ITER baseline scenario simulation.

IV. APPLICATION WITHIN INTEGRATED MODELING

The GENE quasilinear neural network model (GENE-QLNN)
was coupled to the JINTRAC integrated modeling framework, as a

pubs.aip.org/aip/pop

drop-in replacement for standard quasilinear models such as
QuaLiKiz and TGLF. Inputs from JINTRAC to GENE-QLNN are the
NN input features pn, R/L1i, R/Lre, R/Lye, g, and 5. Outputs from
GENE-QLNN to JINTRAC are the ion and electron heat fluxes, and
electron particle flux, arising from combinations of the six separate
NNs as described in Sec. III. The ITER baseline case
(Br =5.3T,I, = 15MA) shown in Fig. 1 was rerun with GENE-
QLNN, with the same simulation settings, reviewed here briefly.
Predicted plasma processes and respective quantities were poloidal
flux diffusion (plasma current), heat transport (temperatures), and
particle transport (density). The JINTRAC 1D partial differential
equation (PDE) radial resolution was 71 grid points. GENE-QLNN
was called on a downscaled grid of 25 points, with transport coetfi-
cients interpolated onto the full grid following each call. The time step
was adaptive, with a maximum set at 3.3 ms. Due to the predictor—
corrector method employed, GENE-QLNN was called twice per time
step, for each point on the downscaled grid. Grad-Shafranov plasma
equilibrium was self-consistently calculated throughout with the
ESCO code.”” The impurity content and radial profiles were set as
constant in time, from the final stationary phase of the previous
JINTRAC-QuaLiKiz simulation. However, impurity charge state equi-
librium was self-consistently calculated with the evolving T, and #,.
33MW of NBI heating was self-consistently calculated with the
PENCIL code.”” 20MW of electron cyclotron resonance heating
(ECRH) was prescribed as a Gaussian with a peak location at
py = 0.4, and a FWHM of py = 0.13. Neoclassical transport was cal-
culated with the NCLASS code.”” Pellet fueling was simulated with a
simplified discrete pellet model without drifts.”" Line radiation from
impurities was self-consistently calculated. The main ion (D and T)
particle transport was set as the output of the NN electron particle
flux, in gyroBohm units. This assumption is necessary since only elec-
tron particle fluxes were included in the training set, due to the prag-
matic decision to maintain fixed impurity gradients. Alpha particle
heating was calculated with a simple T,-dependent parameterization
that calculates the fractional energy deposition on ions and electrons,
and assumes equivalence between the heating deposition and fusion
rate profiles.”” The model boundary condition was taken as the EPED-
consistent pedestal top at py = 0.93. In practice, the last grid point of
model evaluation was at pyy = 0.8936 (within the training limits), and
a constant extrapolation of transport coefficients was assumed up until
the internal boundary condition location at the pedestal top. The pro-
cess in which a EPED-consistent pedestal is calculated for these ITER
conditions is detailed in Ref. 63. We set the pedestal height obtained in
Ref. 63 as an internal boundary condition at py = 0.93 and do not
modify the pedestal self-consistently with the core profile evolution,
which itself can modify the pedestal calculations, e.g., through

P¥:60:01 €202 18nBnY $0

TABLE IV. Performance metrics for the GENE quasilinear NN model, compared to the full original dataset. The first three columns correspond to the average absolute error
divided by the average values for all unstable ion heat flux, electron heat flux, and particle fluxes. The subsequent three columns correspond to the R? score for the unstable
points in the test dataset. The values of the training dataset are similar and omitted for brevity. The last two columns signify the percentage of potential mislabeling, as in the per-
centage of NN predicted non-zero fluxes which were stable in the dataset, and vice versa. Spurious flux (false positive) is defined as cases where Quy > 0 and Qgataset = 0.
Spurious stable (false negative) is defined as cases where Qyy =0 and Qgataset > 0.

(l0Qor|) (l0Qe]) (IoT[)
(Qor) (Q.) (Te) R*(Qpr) R(Q) R(T)

10% 16% 29% 0.9896 0.9548 0.9196 10% 7%

Spurious stable ratio
(False negative ratio)

Spurious flux ratio
(False positive ratio)
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FIG. 10. Comparison between JINTRAC-QuaLiKiz and JINTRAC-[GENE-QLNN] multi-physics simulations of the ITER baseline scenario with [, = 15 MA, for ion temperature
(left panel), electron temperature (center panel), and electron density (right panel). The core boundary condition is taken at normalized toroidal flux coordinate py = 0.92. The
plots correspond to time-averaged over the final 800 ms of the respective simulations (each lasting 20 plasma seconds), during quasi-stationary state.

modifications in plasma ﬂ.m From the initial condition, the simula-
tions last 20 s of plasma evolution, which is several energy confinement
times and sufficient to reach a quasi-stationary state. With GENE-
QLNN, the simulation required 60 CPU min on a single core [Intel(R)
Xeon(R) Processor E5-2665 at 2.40 GHz]. GENE-QLNN was not the
bottleneck in the simulation. GENE-QLNN model inference times is
on the order of 1 ms per PDE time step (At ~ 3 ms for this case) and
thus real time capable for ITER. For comparison, the JINTRAC-
QuaLiKiz simulation required ~500 CPU h. If quasilinear GENE is
directly applied as the turbulent transport model within integrated
modeling, then the estimated required CPU time for this simulation
would be 1 x 10° CPU h. This time is more than was required for the
training set generation (=0.25 x 10° CPU h). It is striking that the
extent of surrogate model speedup enables compute time to be saved
following a single use.

The results are shown in Fig. 10. The JINTRAC-QuaLiKiz simu-
lation from Ref. 36 is compared with the JINTRAC-[GENE-QLNN]
simulation, for ion temperature, electron temperature, and electron
density predictions at stationary state. Averaging over the last 1 s of
the simulation, the GENE-QLNN predictions correspond to approxi-
mately 18% lower plasma confinement than QuaLiKiz, with 327 M]J
stored thermal energy as opposed to 386 MJ. This corresponds to
Pps = 495 MW (power from DT fusion reactions) for JINTRAC-
[GENE-QLNN], as opposed to Pp, ~619MW for JINTRAC-
QuaLiKiz. See Fig. 11 for the fusion power time traces. These power
values correspond to fusion gain of Q=9.36 and Q=11.7, respec-
tively. The ITER baseline goal is Q= 10. The QuaLiKiz simulations
were optimistic, and likely, the lower confinement in the GENE-
QLNN simulations is due to the more correct treatment of TEMs,
which are more strongly driven in GENE compared to the QuaLiKiz
version used here.”” However, the GENE-QLNN results are still con-
sistent with ITER goals. Nevertheless, there are multiple sources of
uncertainty in the projections, with identifiable trends in the modifica-
tions they would induce. The JINTRAC-[GENE-QLNN] simulations
were conservative by not incorporating the stabilizing impact of E x B
shear or electromagnetic effects. Furthermore, the average T;/T, is
higher in the GENE-QLNN simulation by ~6% compared to the orig-
inal QuaLiKiz simulation; this would increase the ITG critical gradient

thresholds in the GENE-QLNN simulation if T;/T, is included as a
GENE-QLNN input. However, the reduced core confinement pre-
dicted in the GENE-QLNN simulations as they stand may also lead to
a reduced pedestal height, due to a lower total plasma £.°* While
recent EPED scans in the ITER baseline regime have shown small vari-
ation of the pedestal height with plasma-f,"° future work should

—— QualiKiz

——— GENE-QLNN
800+ Q

700 1

)]
o
o

Pfus[MW]
w
o
o

400 1
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2001~ . . . .
0 5 10 15 20
Time from initial condition [s]

FIG. 11. Fusion power output for JINTRAC-QuaLiKiz and JINTRAC-[GENE-QLNN]
ITER baseline simulations shown in Fig. 10. The QuaLiKiz time trace has continu-
ous jitter due to inherent fluctuations in the gradientflux relationship over time, due
to QuaLiKiz mode convergence issues, i.e., strong sensitivity to input parameters of
converging/not-converging to eigenvalue solutions near instability thresholds. The
initial transient in the GENE-QLNN simulation is due to an initial density spike near
the internal boundary condition (py = 0.93) due to low turbulence at the initial con-
dition, and the pellet particle source. The qualitatively difference initial trajectories
between QuaLiKiz and GENE-QLNN may indicate that GENE-QLNN was tran-
siently extrapolating outside its training set, even if the final stationary state (the
goal of this use case) is well within the training set.
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nevertheless focus on self-consistent core-pedestal coupling, as in Ref.
18. Additional sources of uncertainty are the impurity content, the
transport coefficients in the central core region (py < 0.3), which are
prescribed, as well as the pedestal boundary condition height and
width. A more detailed UQ study is out of the scope of this paper.
A consequence of the central core region transport coefficient
prescription is the observed density flattening. This arises due to a
combination of a lack of turbulent transport (which provides an
inward convective term leading to density peaking), a lack of central
particle source (the pellet source is limited to the outer region), and
the small prescribed background particle diffusivity (background
D, = 0.1m?/s in this case). The combination of residual diffusivity
and lack of particle source leads to the flattening.

The GENE-QLNN model applied here was trained with the full
dataset from both Phase 1 and Phase 2 of run generation. At each
radial location, the final R/Lt;, R/Lte, R/Ly,, S, and g values do not
extend beyond the training set envelope. In Appendix B, we outline
what occurs when applying a GENE-QLNN version only utilizing the
Phase 1 data, where the subsequent simulation extrapolates beyond
the training set.

V. CONCLUSIONS AND OUTLOOK

Linear gyrokinetic calculations, nonlinear simulations, a bespoke
saturation rule, and neural network regression have been combined to
generate a fast and accurate surrogate turbulent transport model appli-
cable for ITER baseline scenario modeling. The neural network infer-
ence time is eight orders of magnitude faster than the original
quasilinear gyrokinetic calculations. The model predicts a fusion gain
of Q =~ 9 for the ITER baseline scenario, in line with ITER targets. The
prediction is conservative since it does not take into account either the
stabilizing impact of background perpendicular velocity shear or elec-
tromagnetic stabilization of ITG turbulence, which may increase con-
finement. This work provides the as-yet highest fidelity extrapolation
of ITER baseline core plasma confinement. Self-consistent core-pedes-
tal coupling is necessary to further refine the extrapolation.

There is significant opportunity to generalize the approach to
wider parameter sets, input features, and model physics content, and
provide a more broadly applicable transport model both faster and
more accurate than present-day quasilinear transport models such as
QuaLiKiz and TGLF. However, such extensions demand further inno-
vations in a number of aspects. We list these challenges below, as well
as potential solutions, left for future work:

* The GENE-NN training set is likely over-sampled. This ensured
sufficient data for this specific demonstrative application.
However, for wider parameter sets, the computational burden of
linear gyrokinetic runs can become restrictive. Therefore, active
learning pipelines where only truly informative data points are
simulated must be developed, as recently demonstrated in the
fusion turbulence surrogate modeling context.””

* A multi-fidelity approach should be adopted, whereby a database
of nonlinear simulations is strategically scattered in parameter
space to help constrain the saturation rules and/or the surrogate
models themselves. Criteria for how to distribute these high-
fidelity simulations must be established.

* Improvements in mode convergence algorithms should be devel-
oped within the gyrokinetic codes themselves, to facilitate large-
scale automated run generation pipelines. This includes

ARTICLE pubs.aip.org/aip/pop

improved automated identification of mode stability, automated
detection of numerical convergence issues based on expert crite-
ria, and automated averaging over quasi-stationary states as
opposed to strict mode convergence, for those cases where this
occurs.

* Information on subdominant modes can be important for accu-
rate model descriptions in certain regimes. Advances in eigen-
value solution methodology are thus needed, particularly on
robustness for large parameter scans where preconditioner
parameters may need to vary in an automated way throughout
parameter space. Such a capability is a prerequisite to generalize
this approach to stellarator turbulence, where multiple subdomi-
nant modes need to be included for an accurate quasilinear
model.”

* The approach of building surrogate models for each mode type
separately, helpful for clean critical threshold capturing, will need
to be reevaluated in a more general setting such as electromag-
netic turbulence where additional mode types can arise. These
include kinetic ballooning modes (KBMs), microtearing modes
(MTMs), and energetic particle driven modes. More complex cri-
teria will need to be developed to identify mode types in an auto-
mated way.

* Robustness against flux discontinuities due to non-converged
modes can be achieved by training surrogate models directly on
the linear mode characteristics (i.e., growth rates, frequencies,
quasilinear transport weights, perpendicular wavenumber)
instead of the transport fluxes. The transport model is then eval-
uated by applying a saturation rule on the surrogate model out-
puts, which will be smooth. This has the additional advantage of
allowing various saturation models to be tested in a modular
fashion.

* Variations of the supervised learning model architecture should
be explored. The NN topology can be structured to better capture
the salient features of the input-output structure, e.g., through a
parameterized critical-gradient model.”” Additionally, instead of
FFNNs, decision tree regression models like XGBoost can be
investigated.

A high-fidelity fast surrogate turbulence model based directly on
quasilinear and nonlinear gyrokinetics would provide significant
advances in tokamak scenario optimization and control-oriented
applications. Ultimately, the goal is to train innovative and general
controllers directly from simulation frameworks.”’ For enabling design
of multivariate controllers, the simulation frameworks demand fast
and accurate multi-physics simulation capability. The model and
methodology we have introduced fit into this approach.
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APPENDIX A: JUSTIFICATION OF BUNDLED ION
ASSUMPTION

As discussed in Sec. 11, the original ITER simulation contained
six ion species: separate deuterium (D) and tritium (T), helium
(He) fusion ash, beryllium (Be), and tungsten (W) arising from
plasma-wall interactions, and seeded neon (Ne) for heat exhaust
control. To reduce the number of ion species and thus decrease the
computational burden of the GENE runs, a bundled ion assumption
was made. D and T were bundled into a single effective main ion
species. All impurities (He, Be, W, and Ne) were bundled into a sin-
gle effective species with a charge state, density, and density gradi-
ent chosen such that the main ion species maintains the same
density and density gradient as D and T in the original six-ion set,
and that the effective charge Z.¢ is maintained. The implication for
this case was to set the effective impurity charge as Z=7. The effec-
tive impurity mass was set at A = 2Z. Since the primary impact of
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impurities on ITG and trapped electron mode (TEM) instabilities —
which dominate this ITER case - is through the impact on main
ion density and density gradient, as well as collisionality, these
choices minimize the impact of the bundled ion assumption on the
resultant modes. This is illustrated in Fig. 12 for a representative
case at normalized radius py = 0.6, where agreement within 2% is
seen between six-ion and effective two-ion simulations.

APPENDIX B: IMPACT OF ONLY USING PHASE 1 DATA
FOR SURROGATE MODEL

In Fig. 13, we show the results of a INTRAC-[GENE-QLNN]
simulation of the ITER baseline scenario. We compare the simula-
tion shown in Fig. 10, which had a surrogate model trained using
the full Phase 142 datasets, with a model trained only with the
Phase 1 dataset, which did not include the supplementary material
points at low R/Ly;, R/Ly,, and R/L,.. The simulation with the
Phase 1 dataset model develops a distinct flattening of ion and elec-
tron temperatures in the py ~ 0.8 region. This flattening corre-
sponds to an extrapolation of the NN outside its Phase 1 training
envelope. What is likely occurring is as follows. TEM electron heat
fluxes, when TEM is unstable, can increase with decreasing R/Lr;,
as shown in the central panel of Fig. 8. Conversely, when ITG is
unstable, the ion heat flux can increase with decreasing R/Lr,.
When no combined low R/Ly; and R/Lr, is available in the dataset,
which typically corresponds to mode stability, then a runaway situa-
tion can occur. Decreasing R/Ly, and R/Ly; leads to increasing flux,
leading to profile flattening, and further model extrapolation to yet
higher fluxes. This is due to the NN extrapolating the individual
heat flux trends observed in the unstable zone. In our application,
due to the lattice nature of the training dataset, such extrapolations
are simple to identify in applications and rectify through appropri-
ately broadening the training set. However, in general, a method of
surrogate model UQ is vital to judge the trustworthiness of model
output.
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FIG. 12. Comparison between linear GENE simulations corresponding to the nominal parameters at py = 0.6. The resultant growth rates (left panel) and frequencies (right
panel) are compared for input parameters containing all six ion species and for two effective bundled ion species.
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FIG. 13. Comparison between JINTRAC-QuaLiKiz (red solid lines) and JINTRAC-[GENE-QLNN] multi-physics simulations of the ITER baseline scenario with [, = 15 MA, for
ion temperature (left panel), electron temperature (center panel), and electron density (right panel). The case with GENE-QLNN model trained only with the Phase 1 dataset
(blue solid line) is compared with the complete case trained with both Phase 1+ 2 data (green dotted line). The Phase 1 case is extrapolating beyond its training set, evident
through the temperature flattening in the py ~ 0.8 region. The core boundary condition is taken at normalized toroidal flux coordinate py = 0.92. The plots correspond to
time-averaged over the final 800 ms of the respective simulations, during quasi-stationary state.
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