420 research outputs found

    Influenza Vaccine Effectiveness against Hospitalisation with Confirmed Influenza in the 2010-11 Seasons: A Test-negative Observational Study

    Get PDF
    Immunisation programs are designed to reduce serious morbidity and mortality from influenza, but most evidence supporting the effectiveness of this intervention has focused on disease in the community or in primary care settings. We aimed to examine the effectiveness of influenza vaccination against hospitalisation with confirmed influenza. We compared influenza vaccination status in patients hospitalised with PCR-confirmed influenza with patients hospitalised with influenza-negative respiratory infections in an Australian sentinel surveillance system. Vaccine effectiveness was estimated from the odds ratio of vaccination in cases and controls. We performed both simple multivariate regression and a stratified analysis based on propensity score of vaccination. Vaccination status was ascertained in 333 of 598 patients with confirmed influenza and 785 of 1384 test-negative patients. Overall estimated crude vaccine effectiveness was 57% (41%, 68%). After adjusting for age, chronic comorbidities and pregnancy status, the estimated vaccine effectiveness was 37% (95% CI: 12%, 55%). In an analysis accounting for a propensity score for vaccination, the estimated vaccine effectiveness was 48.3% (95% CI: 30.0, 61.8%). Influenza vaccination was moderately protective against hospitalisation with influenza in the 2010 and 2011 seasons

    (G)hosting television: Ghostwatch and its medium

    Get PDF
    This article’s subject is Ghostwatch (BBC, 1992), a drama broadcast on Halloween night of 1992 which adopted the rhetoric of live non-fiction programming, and attracted controversy and ultimately censure from the Broadcasting Standards Council. In what follows, we argue that Ghostwatch must be understood as a televisually-specific artwork and artefact. We discuss the programme’s ludic relationship with some key features of television during what Ellis (2000) has termed its era of ‘availability’, principally liveness, mass simultaneous viewing, and the flow of the television super-text. We trace the programme’s television-specific historicity whilst acknowledging its allusions and debts to other media (most notably film and radio). We explore the sophisticated ways in which Ghostwatch’s visual grammar and vocabulary and deployment of ‘broadcast talk’ (Scannell 1991) variously ape, comment upon and subvert the rhetoric of factual programming, and the ends to which these strategies are put. We hope that these arguments collectively demonstrate the aesthetic and historical significance of Ghostwatch and identify its relationship to its medium and that medium’s history. We offer the programme as an historically-reflexive artefact, and as an exemplary instance of the work of art in television’s age of broadcasting, liveness and co-presence

    Computational Fluorescence Suppression in Shifted Excitation Raman Spectroscopy

    Get PDF
    Fiber-based Raman spectroscopy in the context of &lt;italic&gt;in vivo&lt;/italic&gt; biomedical application suffers from the presence of background fluorescence from the surrounding tissue that might mask the crucial but inherently weak Raman signatures. One method that has shown potential for suppressing the background to reveal the Raman spectra is shifted excitation Raman spectroscopy (SER). SER collects multiple emission spectra by shifting the excitation by small amounts and uses these spectra to computationally suppress the fluorescence background based on the principle that Raman spectrum shifts with excitation while fluorescence spectrum does not. We introduce a method that utilizes the spectral characteristics of the Raman and fluorescence spectra to estimate them more effectively, and compare this approach against existing methods on real world datasets.</p

    Elucidation of the mechanisms of action of Bacteriophage K/nano-emulsion formulations against S. aureus via measurement of particle size and zeta potential

    Get PDF
    In earlier work we have demonstrated the effect that nano-emulsions have on bacterial growth, and most importantly the enhanced bacteriophage infectivity against Staphylococcus aureus in planktonic culture when phage are carried in nano-emulsions. However, the mechanisms of enhancement of the bacteriophage killing effect are not specifically understood. This work focuses on the investigation of the possible interactions between emulsion droplets and bacterial cells, between emulsion droplets and bacteriophages, and finally interactions between all three components: nano-emulsion droplets, bacteria, and bacteriophages. The first approach consists of simple calculations to determine the spatial distribution of the components, based on measurements of particle size. It was found that nano-emulsion droplets are much more numerous than bacteria or bacteriophage, and due to their size and surface area they must be covering the surface of both cells and bacteriophage particles. Stabilisation of bacteriophages due to electrostatic forces and interaction with nano-emulsion droplets is suspected, since bacteriophages may be protected against inactivation due to 'charge shielding'. Zeta potential was measured for the individual components in the system, and for all of them combined. It was concluded that the presence of nano-emulsions could be reducing electrostatic repulsion between bacterial cells and bacteriophage, both of which are very negatively 'charged'. Moreover, nano-emulsions lead to more favourable interaction between bacteriophages and bacteria, enhancing the anti-microbial or killing effect. These findings are relevant since the physicochemical properties of nano-emulsions (i.e. particle size distribution and zeta potential) are key in determining the efficacy of the formulation against infection in the context of responsive burn wound dressings-which is the main target for this work

    Computational Fluorescence Suppression in Shifted Excitation Raman Spectroscopy

    Get PDF
    Fiber-based Raman spectroscopy in the context of &lt;italic&gt;in vivo&lt;/italic&gt; biomedical application suffers from the presence of background fluorescence from the surrounding tissue that might mask the crucial but inherently weak Raman signatures. One method that has shown potential for suppressing the background to reveal the Raman spectra is shifted excitation Raman spectroscopy (SER). SER collects multiple emission spectra by shifting the excitation by small amounts and uses these spectra to computationally suppress the fluorescence background based on the principle that Raman spectrum shifts with excitation while fluorescence spectrum does not. We introduce a method that utilizes the spectral characteristics of the Raman and fluorescence spectra to estimate them more effectively, and compare this approach against existing methods on real world datasets.</p
    • …
    corecore