598 research outputs found

    Low-Mach number treatment for Finite-Volume schemes on unstructured meshes

    Get PDF
    The paper presents a low-Mach number (LM) treatment technique for high-order, Finite-Volume (FV) schemes for the Euler and the compressible Navier–Stokes equations. We concentrate our efforts on the implementation of the LM treatment for the unstructured mesh framework, both in two and three spatial dimensions, and highlight the key differences compared with the method for structured grids. The main scope of the LM technique is to at least maintain the accuracy of low speed regions without introducing artefacts and hampering the global solution and stability of the numerical scheme. Two families of spatial schemes are considered within the k-exact FV framework: the Monotonic Upstream-Centered Scheme for Conservation Laws (MUSCL) and the Weighted Essentially Non-Oscillatory (WENO). The simulations are advanced in time with an explicit third-order Strong Stability Preserving (SSP) Runge–Kutta method. Several flow problems are considered for inviscid and turbulent flows where the obtained solutions are compared with referenced data. The associated benefits of the method are analysed in terms of overall accuracy, dissipation characteristics, order of scheme, spatial resolution and grid composition

    Complete body aerodynamic study of three vehicles

    Get PDF
    Cooling drag has traditionally proven to be a difficult flow phenomenon to predict using computational fluid dynamics. With the advent of grille shutter systems, the need to accurately pre-dict this quantity during vehicle development has become more pressing. A comprehensive study is presented in the paper of three automotive models with different cool-ing drag deltas using the commercial CFD solver STARCCM+. The notchback DrivAer model with under-hood cooling provides a popular academic benchmark alongside two fully-engineered production cars; a large saloon (Jaguar XJ) and an SUV (Land Rover Range Rover). Previous studies detail the differences in the flow field; highlighting the interaction between the exiting under-hood cooling flow, and the wheel and base wakes for open and closed grilles. In this study three levels of spatial discretization were used for each vehicle in order to study the importance of accurately capturing the base wake on the absolute and cooling delta drag values and the cooling air mass flow rates. This study is performed using three steady-state RANS solvers (k-ɛ realizable, k-ω SST and Spalart-Allmaras), and the unsteady k-ω SST Detached-Eddy-Simulation. Results show that it is very important to capture both separation and large wake structures in order to recover physically realistic behavior. The RANS models perform well (within 0.005 Cd, 5 counts) on saloon based models, with the k-ɛ realizable model displaying mesh independence. For the SUV model the RANS models predict the correct cooling deltas; however, only the k-ω SST model gives accurate absolute values, with those for k-e realizable and Spalart-Allmaras 22 and 18 counts too high, respectively. The k-ω SST model on the finest mesh contains oscillations in the flow field, particularly in the wake, which are attributable to the unsteady nature of the flow. When averaging the steady-state simulations over 1000 iterations the resulting wake structure is shown to be in close agreement to the unsteady Detached-Eddy-Simulations. The DES model confirms that the variance in the residuals for the k-w SST was indicative of flow unsteadiness

    Mapping the immune environment in clear cell renal carcinoma by single-cell genomics

    Get PDF
    Clear cell renal cell carcinoma (ccRCC) is one of the most immunologically distinct tumor types due to high response rate to immunotherapies, despite low tumor mutational burden. To characterize the tumor immune microenvironment of ccRCC, we applied single-cell-RNA sequencing (SCRS) along with T-cell-receptor (TCR) sequencing to map the transcriptomic heterogeneity of 25,688 individual CD4

    Simulating flexibility, variability and decentralisation with an integrated energy system model for Great Britain

    Get PDF
    Energy system models allow the development and assessment of ambitious transition pathways towards a sustainable energy system. However, current models lack adequate spatial and temporal resolution to capture the implications of a shift to decentralised energy supply and storage across multiple local energy vectors to meet spatially variable energy demand. There is also a lack of representation of interactions with the transport sector as well as national and local energy system operation. Here, we bridge these gaps with a high-resolution system-of-systems modelling framework which is applied to Great Britain to simulate differences between the performance of decarbonised energy systems in 2050 through two distinct strategies, an electric strategy and a multi-vector strategy prioritising a mix of fuels, including hydrogen. Within these strategies, we simulated the impacts of decentralised operation of the energy system given the variability of wind and across flexibility options including demand side management, battery storage and vehicle to grid services. Decentralised operation was shown to improve operational flexibility and maximise utilisation of renewables, whose electricity supplies can be cost-effectively converted to hydrogen or stored in batteries to meet peak electricity demands, therefore reducing carbon-intensive generation and the requirement for investment in expanding the electricity transmission network capacity

    TOP2A and EZH2 Provide Early Detection of an Aggressive Prostate Cancer Subgroup.

    Get PDF
    Purpose: Current clinical parameters do not stratify indolent from aggressive prostate cancer. Aggressive prostate cancer, defined by the progression from localized disease to metastasis, is responsible for the majority of prostate cancer–associated mortality. Recent gene expression profiling has proven successful in predicting the outcome of prostate cancer patients; however, they have yet to provide targeted therapy approaches that could inhibit a patient\u27s progression to metastatic disease. Experimental Design: We have interrogated a total of seven primary prostate cancer cohorts (n = 1,900), two metastatic castration-resistant prostate cancer datasets (n = 293), and one prospective cohort (n = 1,385) to assess the impact of TOP2A and EZH2 expression on prostate cancer cellular program and patient outcomes. We also performed IHC staining for TOP2A and EZH2 in a cohort of primary prostate cancer patients (n = 89) with known outcome. Finally, we explored the therapeutic potential of a combination therapy targeting both TOP2A and EZH2 using novel prostate cancer–derived murine cell lines. Results: We demonstrate by genome-wide analysis of independent primary and metastatic prostate cancer datasets that concurrent TOP2A and EZH2 mRNA and protein upregulation selected for a subgroup of primary and metastatic patients with more aggressive disease and notable overlap of genes involved in mitotic regulation. Importantly, TOP2A and EZH2 in prostate cancer cells act as key driving oncogenes, a fact highlighted by sensitivity to combination-targeted therapy. Conclusions: Overall, our data support further assessment of TOP2A and EZH2 as biomarkers for early identification of patients with increased metastatic potential that may benefit from adjuvant or neoadjuvant targeted therapy approaches. ©2017 AACR

    Power system frequency response from the control of bitumen tanks

    Get PDF
    Bitumen tanks were tested to investigate the capability of industrial heating loads to provide frequency response to an electric power system. A decentralized control algorithm was developed enabling the tanks to alter their power consumption in proportion to the variations of grid frequency. The control maintains the normal operation of tanks and causes little impact on their primary function of storing hot bitumen. Field investigations were undertaken on 76 tanks with power ratings from 17 to 75 kW. A model of a population of controlled tanks was developed. The behavior of the tanks was compared between the simulations and the field tests. The model of controlled tanks was then integrated with a simplified Great Britain power system model. It was shown that the controlled tanks were able to contribute to the grid frequency control in a manner similar to and faster than that provided by frequency-sensitive generation

    TOI 540 b: A Planet Smaller than Earth Orbiting a Nearby Rapidly Rotating Low-mass Star

    Get PDF
    We present the discovery of TOI 540 b, a hot planet slightly smaller than Earth orbiting the low-mass star 2MASS J05051443-4756154. The planet has an orbital period of P=1.239149P = 1.239149 days (±\pm 170 ms) and a radius of r=0.903±0.052REarthr = 0.903 \pm 0.052 R_{\rm Earth}, and is likely terrestrial based on the observed mass-radius distribution of small exoplanets at similar insolations. The star is 14.008 pc away and we estimate its mass and radius to be M=0.159±0.014MSunM = 0.159 \pm 0.014 M_{\rm Sun} and R=0.1895±0.0079RSunR = 0.1895 \pm 0.0079 R_{\rm Sun}, respectively. The star is distinctive in its very short rotational period of Prot=17.4264+/−0.0094P_{\rm rot} = 17.4264 +/- 0.0094 hours and correspondingly small Rossby number of 0.007 as well as its high X-ray-to-bolometric luminosity ratio of LX/Lbol=0.0028L_X / L_{\rm bol} = 0.0028 based on a serendipitous XMM-Newton detection during a slew operation. This is consistent with the X-ray emission being observed at a maximum value of LX/Lbol≃10−3L_X / L_{\rm bol} \simeq 10^{-3} as predicted for the most rapidly rotating M dwarfs. TOI 540 b may be an alluring target to study atmospheric erosion due to the strong stellar X-ray emission. It is also among the most accessible targets for transmission and emission spectroscopy and eclipse photometry with JWST, and may permit Doppler tomography with high-resolution spectroscopy during transit. This discovery is based on precise photometric data from TESS and ground-based follow-up observations by the MEarth team.Comment: 18 pages, 7 figures. Accepted for publication in The Astronomical Journa

    Efficient green methanol synthesis from glycerol

    Get PDF
    The production of biodiesel from the transesterification of plant-derived triglycerides with methanol has been commercialized extensively. Impure glycerol is obtained as a by-product at roughly one-tenth the mass of the biodiesel. Utilization of this crude glycerol is important in improving the viability of the overall process. Here we show that crude glycerol can be reacted with water over very simple basic or redox oxide catalysts to produce methanol in high yields, together with other useful chemicals, in a one-step low-pressure process. Our discovery opens up the possibility of recycling the crude glycerol produced during biodiesel manufacture. Furthermore, we show that molecules containing at least two hydroxyl groups can be converted into methanol, which demonstrates some aspects of the generality of this new chemistry

    Viral population estimation using pyrosequencing

    Get PDF
    The diversity of virus populations within single infected hosts presents a major difficulty for the natural immune response as well as for vaccine design and antiviral drug therapy. Recently developed pyrophosphate based sequencing technologies (pyrosequencing) can be used for quantifying this diversity by ultra-deep sequencing of virus samples. We present computational methods for the analysis of such sequence data and apply these techniques to pyrosequencing data obtained from HIV populations within patients harboring drug resistant virus strains. Our main result is the estimation of the population structure of the sample from the pyrosequencing reads. This inference is based on a statistical approach to error correction, followed by a combinatorial algorithm for constructing a minimal set of haplotypes that explain the data. Using this set of explaining haplotypes, we apply a statistical model to infer the frequencies of the haplotypes in the population via an EM algorithm. We demonstrate that pyrosequencing reads allow for effective population reconstruction by extensive simulations and by comparison to 165 sequences obtained directly from clonal sequencing of four independent, diverse HIV populations. Thus, pyrosequencing can be used for cost-effective estimation of the structure of virus populations, promising new insights into viral evolutionary dynamics and disease control strategies.Comment: 23 pages, 13 figure
    • …
    corecore