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Abstract

The paper presents a low-Mach number (LM) treatment technique for high-order, Finite-Volume (FV)
schemes for the Euler and the compressible Navier-Stokes equations. We concentrate our efforts on the
implementation of the LM treatment for the unstructured mesh framework, both in two and three spatial
dimensions, and highlight the key differences compared with the method for structured grids. The main scope
of the LM technique is to at least maintain the accuracy of low speed regions without introducing artefacts
and hampering the global solution and stability of the numerical scheme. Two families of spatial schemes are
considered within the k-exact FV framework: the Monotonic Upstream-Centered Scheme for Conservation
Laws (MUSCL) and the Weighted Essentially Non-Oscillatory (WENO). The simulations are advanced in
time with an explicit third-order Strong Stability Preserving (SSP) Runge-Kutta method. Several flow
problems are considered for inviscid and turbulent flows where the obtained solutions are compared with
referenced data. The associated benefits of the method are analysed in terms of overall accuracy, dissipation
characteristics, order of scheme, spatial resolution and grid composition.

1. Introduction

One of the most challenging parts of high-resolution numerical schemes is that they have to maintain
adaptivity throughout the solution. Adaptivity, in the sense of identifying regions of sharp gradients, often
encountered in compressible flows as well as preventing or eliminating any spurious oscillations that can
occur; but at the same time they should be adaptive and achieve high-order of accuracy in smooth regions
of the flow. There is a delicate balance between the two requirements and is dependent upon the spatial dis-
cretisation method, the shock-capturing algorithms, the grid types, the Riemann solvers, the time-stepping
algorithms and the integration quadrature rules to name a few.

The numerical methods for unstructured grids have matured and numerous elegant approaches [1–14] and
algorithms have been developed in the FV framework for a wide range of applications in Computational Fluid
Dynamics. Other state-of-the-art approaches have been developed, such as the Discontinuous Galerkin (DG)
[2, 11, 15–18], Spectral Finite-Volume (SFV) methods [12, 19–23], Flux Reconstruction (FR) methods[14, 24]
that have been successfully applied for various flow problems. For the FV framework, the first class of high-
resolution methods developed for unstructured grids included the Essentially Non-Oscillatory (ENO) type
schemes [25, 26], followed by the WENO type schemes [27–30]. In the WENO case, the high-order accuracy
was achieved by non-linearly combining a series of high-order reconstruction polynomials arising from a series
of reconstruction stencils. Recently, a class of WENO type methods [8, 9] has been successfully extended to
hybrid unstructured meshes with various geometrical shapes such as tetrahedrals, hexahedrals, prisms,and
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pyramids. WENO schemes can achieve very high-order of spatial accuracy across interfaces between cells of
different types, and non-oscillatory profiles are produced for discontinuous solutions. This provides greater
flexibility to handle complex geometrical shapes in an efficient and accurate manner.

For the majority of the FV numerical methods applied to compressible flows, the dissipation character-
istics are proportional to the speed of sound, therefore the low Mach number features are damped by the
numerical scheme as noted by Thornber et al. [31]. This is particular important at regions of the flow where
the local Mach number is small such in the vicinity of the boundary layer and in vortices arising from shear
layers.

There is a wealth of different approaches aiming to improve the dissipation characteristics of numerical
methods for compressible flow equations, either by enabling their deployment for very low Mach number
flows, or improving their resolution at low Mach number regions [32–42]. In the novel approach of Rieper
[41,42 ], it was shown through an one-dimensional analysis that the right amount of artificial viscosity on
each individual characteristic variable is a prerequisite for an upwind scheme to approximate low Mach
number flows correctly. A low diffusion preconditioning scheme was developed by Shen et al. [40] using 5th-
order WENO scheme, and significant benefits in terms of accuracy and efficiency were noted for low-Mach
number flows, as well transonic and supersonic flows.

A thorough analysis of various Roe Riemann solver [43] modifications for low Mach number flows was
performed by Li et al. [38], highlighting the dependence on the order of the coefficient of the velocity
difference term and pressure difference term, along with some rules for constructing numerical schemes for
all-speed flows. A low-dissipation version of Roe Riemann solver [43] was introduced by Oßwald et al. [39]
and compared with the approach of Thornber et al. [31]; the former was modifying only the dissipation term
in the numerical flux function, in contrast to the approach of Thornber et al.[31], where the evaluation of
the physical fluxes is modified. The latter approach exhibited superior behaviour for the Decaying Isotropic
Turbulence (DIT) test problem. Additionally, a non-physical high dissipation of energy was noted when
using a tetrahedral mesh for the same test case with a second-order FV scheme. Another novel approach
of Qu et al. [33] entailed the development of a new Roe-type scheme labelled RoeMAS, that exhibited
high-resolution for low Mach number flows as well as robustness against odd-even decoupling.

The work of Nogueira et al. [32], presents the application of a Moving Least Squares (MLS) FV formu-
lation, in conjunction with a low-Mach number fix and a slope limiter. Grid dependency of the schemes was
assessed, demonstrating that even high-order schemes can benefit from the low-Mach number fix of Rieper
et al. [41,42 ]. It was highlighted that the accuracy problem of FV schemes for low Mach number flows
can be alleviated by using high-order discretisation schemes. The Discontinuous Galerkin (DG) schemes
exhibit a similar accuracy problem to the FV schemes as shown by Bassi et al. [44], where it is shown that
preconditioning improves accuracy and efficiency of DG schemes in the low Mach number regime.

All of the aforementioned approaches generally involve structured grids, or quadrilateral dominant meshes
in 2D. Another new aspect, that was presented by Rieper et al. [45], is that low Mach number accuracy
of FV schemes is dependent on the cell geometry, since when applied on a triangular grid, the accuracy
problem disappears. A comprehensive asymptotic analysis of this interesting phenomenon for the first-order
Roe scheme [43] revealed that the leading-order velocity component normal to a cell edge does not jump,
and that the arbitrary orientation of these triangular cells leaves enough degrees of freedom for the velocity
field to represent a physical flow. This study did not include higher-order schemes for triangular meshes.
However, the second-order Roe scheme [43] on unstructured triangular grids led to completely wrong results.
It was assumed that the reconstruction process prevents the establishment of a continuous normal velocity
component introducing the inaccurate pressure field. For higher-order schemes a smoother reconstruction
which seems to prevent the jumps of the normal velocity component and with it the accuracy problem was
identified.

The work in this paper is a revision of the approach of Thornber et al. [31], since the original imple-
mentation of the method as it will be demonstrated can not be extended to unstructured grids. A similar
approach is introduced by Oßwald et al. [39], where the Roe Riemann solver was employed, however that
study employed these schemes to second-order accurate FV schemes only for tetrahedral meshes. Addition-
ally, it was noticed that extra dissipation was observed over the higher wave number range for the DIT test
problem, which was not fully understood. To the best of the authors knowledge this is a first attempt to
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evaluate the characteristics and the performance of a low-Mach number fix using FV methods for unstruc-
tured meshes of various element types for 2D and 3D inviscid and turbulent compressible flows, while also
utilising higher-order schemes. In addition, the challenges associated with the modifications are assessed
and guidelines are provided for further development of these techniques. The compactness of the proposed
scheme following the philosophy of Thornber et al. [31] can be utilised with any Riemann solver in order
to remove the Mach number dependence, and improve the resolution at low Mach number regions of the
flow. The original LM treatment proposed by Thornber et al. [31] is not directly transferable to any grid-
type since different mesh elements have different dissipation characteristics, therefore a unified treatment
is implemented that is suitable for all element types and through the computational results obtained the
difference between the original treatment, and the modified one are presented. Finally, a desirable feature
of this treatment is the efficient implementation in any compressible code, for any numerical scheme that
uses a Riemann solver with negligible additional computational expense.

The rest of the paper is organized as follows: section 2 is dedicated to the description of the numerical
framework, including the spatial disretisation, MUSCL, WENO reconstruction techniques, the proposed low-
Mach number treatment, fluxes approximation and the time-stepping algorithm. In Section 3 the numerical
results obtained for various schemes and LM treatments including the inviscid subsonic flow past a 2D
circular cylinder, the inviscid supersonic flow past a 2D circular cylinder, the inviscid 2D vortex evolution,
the inviscid 3D Taylor Green Vortex and the turbulent flow around the 3D SD7003 airfoil are presented.
Finally, the conclusions of the present study are outlined in the last section.

2. General Formulation

The compressible Navier-Stokes equations are considered, written in conservative form as:

∂U(x, t)

∂t
+∇(Fc(U)− Fv(U,∇U)) = 0, (1)

where U is the vector of the conserved mean flow variables, and Fc and Fv are the inviscid and viscous flux
vectors, respectively:

U = [ρ, ρu, ρv, ρw,E]
T
,

Fx
c =

[
ρu, ρu2 + p, ρuv, ρuw, u(E + p)

]T
,

Fy
c =

[
ρv, ρuv, ρv2 + p, ρvw, v(E + p),

]T
,

F z
c =

[
ρw, ρuw, ρvw, ρw2 + p, w(E + p)

]T
,

Fx
v = [0, τxx, τxy, τxz,Θx]

T
,

Fy
v = [0, τxy, τyy, τyz,Θy]

T
,

F z
v = [0, τxz, τyz, τzz,Θz]

T
.

(2)

In the above equations, ρ is the density; u, v, w are the velocity components in x, y and z Cartesian coordi-
nates, respectively. Calorically perfect gas is assumed where the total energy per unit volume is calculated
by E = p/ (γ − 1) + (1/2)ρ(u2 + v2 + w2), where p is the pressure, γ = 1.4 is the ratio of specific heats
for air at normal atmospheric conditions; The laminar viscosity is related to the temperature through the
Sutherland law:

µl
µ0

=

(
T

T0

) 3
2 T0 + S

T + S
, (3)

S is the Sutherland temperature and the subscript 0 denotes a reference state for the corresponding variables.
Unless otherwise stated, the reference values are taken at atmospheric conditions (sea level): dynamic
viscosity µ0 = 1.7894 × 10−5kg/(ms); reference temperatures T0 = 288.16K; S = 110.4K; and Prandtl
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number Pr = 0.72. The approximation of the viscous stress tensor τij is defined by:

τij = µl

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δij

)
, (4)

where δij is the Kronecker delta and the subscripts i, j, k refer to the Cartesian coordinate components
x = (x, y, z). The work of viscous stresses and heat conduction, Θ, is given by:

Θx = uτxx + vτxy + wτxz +
( µl
Pr

) γ

(γ − 1)

∂T

∂x
,

Θy = uτyx + vτyy + wτyz +
( µl
Pr

) γ

(γ − 1)

∂T

∂y
,

Θz = uτzz + vτzy + wτzz +
( µl
Pr

) γ

(γ − 1)

∂T

∂z
.

(5)

2.1. High-order finite-volume k-exact least square reconstruction
The discretisation in a domain Ω is achieved by combining conforming arbitrary shaped elements of

volume |Vi|. Integrating Eq. (1) over a mesh element using the finite-volume formulation the following
ordinary differential equation is obtained:

dUi

dt
=− 1

|Vi|

Nf∑
l=1

Nqp∑
α=1

Fn,l
c (U(xα, t))ωα|Al|

+
1

|Vi|

Nf∑
l=1

Nqp∑
α=1

Fn,l
v (U(xα, t),∇U(xα, t))ωα|Al|,

(6)

where Ui is the volume averaged conserved variable vector, Nf is the number of faces per element, Nqp
is the number of quadrature points used for approximating the surface integrals. |Al| is the surface area
of the corresponding face, and α corresponds to different Gaussian integration points xα and weights ωα
over the face. The weight and distribution of the quadrature points depend upon the order of the Gaussian
quadrature rule employed, and for the present study suitable rules for the employed polynomial order are
used. The interface fluxes are computed based on the boundary extrapolated reconstructed values, which
are obtained by a polynomial reconstruction from element-averaged data.

The spatial discretisation is based on the approach of [8, 9] and lies in the the k-exact least square
reconstruction, which is suitable for unstructured meshes with various types of element shapes in 2D and
3D, and it has been previously used successfully for laminar, transitional and turbulent flows [13, 46–53]
and all the schemes are implemented in the UCNS3D CFD code as detailed in [52]. Therefore, only the
key characteristics of this approach are going to be described in this paper. The main objective of the
reconstruction process is to build a high-order polynomial pi(x, y, z) of arbitrary order r, for each considered
element Vi that has the same average as a general quantity Ui. This can be formulated as:

Ui =
1

|Vi|

ˆ
Vi

U(x, y, z) dV =
1

|Vi|

ˆ
Vi

pi(x, y, z) dV. (7)

The reconstruction process is performed in a transformed system of coordinates. The transformation is
achieved by decomposing each element into tetrahedrals in 3D or triangles in 2D. This is done in order to
minimize scaling effects that appear in stencils consisting of elements of different size as well as to improve
the condition number of the system of equations [8, 13]. The reconstruction polynomial at the transformed
cell V ′i is expanded over local polynomial basis functions labelled as φk(ξ, η, ζ), which are given by:

p(ξ, η, ζ) =

K∑
k=0

akφk(ξ, η, ζ) = U0 +

K∑
k=1

akφk(ξ, η, ζ), (8)
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where
φk(ξ, η, ζ) = ψk(ξ, η, ζ)− 1

|V ′i |

ˆ
V ′i

ψk(dξdηdζ), k = 1, 2, .., (9)

with ψk being given by
ψk = ξ, η, ζ, ξ2, η2, ζ2, ξη, ξζ, ηζ...... (10)

(a) Central stencil (b) WENO directional stencils

Figure 1: Schematic representation of stencils for a 3rd-order accurate scheme, with the considered cell filled with green colour
and the blue dots representing the Gaussian quadrature points used for surface integrals in 2D, and the red dotted lines defining
the geometrical sectors for the directional WENO stencils.

Additionally the unknown degrees of freedom ak are constrained for each transformed cell in the stencil
V ′m,m = 1, 2, ..,M to have the same cell average of the reconstruction polynomial p(ξ, η, ζ) as the cell average
of the solution Um:

1

|V ′m|

ˆ
V ′m

p(ξ, η, ζ)(dξdηdζ) = U0 +
1

|V ′m|

K∑
k=1

ˆ
V ′m

akφk(dξdηdζ) = Um, (11)

where ξ, η, ζ are the coordinates in the reference system, and the upper index in the summation of expansion
K is related to the order of the polynomial r byK = 1

6 (r+1)(r+2)(r+3)−1 for 3D andK = 1
2 (r+1)(r+2)−1

for 2D . For computing the degrees of freedom ak, a minimum of K cells is required in the stencil in addition
to the target cell. We utilise twice the number of required cells in the stencils as shown in Fig. 1, M = 2K,
to improve the condition number of the linear system and improve the robustness of the method as described
in [8, 54]. A linear least-square method is adopted to enable the system of equations of (8) for the unknown
degrees of freedom ak. The final form of the linear system is solved with the QR decomposition algorithm.

2.1.1. MUSCL
The MUSCL scheme employed in this work is based on the Barth and Jespersen slope limiter [55]. The

design of this slope limiter requires the minimum and maximum values from the stencil formed by the
considered cell i and the direct side neighbours:

Umin
i = min(Ul : l = 1, ..., L) and Umax

i = max(Ul : l = 1, ..., L), (12)

where l = 1, ..L; L is the total number of direct-side neighbors of element i. The limiter seeks the minimum
value of the slope limiter for all the faces l, and all the quadrature points α that satisfy the following
conditions:

φi = min(φi,l,a) l ∈ [1, Nf ], α ∈ [1, Nqp], (13)
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where φi,l,α corresponds to the slope limiter value at a face and a quadrature point at the edges of the element
i. Then, the limiting function is applied, composed by three different states according to the difference of
the unlimited reconstructed value at the quadrature points of the considered element U(i,l,α), the minimum
and maximum values from the neighbors Ul, and the cell center value Ui, yielding:

φi,α =


min

(
1,

Umax
i −Ui

Ui,l,α −Ui

)
, if Ui,l,α −Ui > 0

min

(
1,

Umin
i −Ui

Ui,l,α −Ui

)
, if Ui,l,α −Ui < 0

1, if Ui,l,α −Ui = 0.

(14)

2.1.2. WENO
The WENO scheme employed in this study, utilises a non-linear combination of various reconstruction

polynomials from the central stencil and the directional stencils as shown in Fig. 1 (b), where each polynomial
is weighted according to the smoothness of its solution, and it is based on [8, 54]. The polynomials are given
by:

pweno
i =

ms∑
m=1

ωmpm(ξ, η, ζ), (15)

where ms is the total number of WENO stencils. Substituting back to Eq. (8) for pm(ξ, η, ζ), we obtain the
following expression

pm (ξ, η, ζ) =

K∑
m=0

a
(m)
k φk(ξ, η, ζ). (16)

Using the condition that the sum of all weights is unity, yields

pweno
i = U0 +

K∑
k=1

(
ms∑
m=0

ωma
m
k

)
φk(ξ, η, ζ)

≡ U0 +

K∑
k=1

ãkφk(ξ, η, ζ),

(17)

where ãk are the reconstructed degrees of freedom; and the non-linear weight ωm is defined by [8, 13, 54]:

ωm =
ω̃m

ms∑
m=0

ω̃m

where ω̃m =
λm

(ε+ Im)b
. (18)

The smoothness indicator is given by:

Im =
∑

1≤|β|≤r

ˆ

Ẽi

(
Dβpm(ξ, η, ζ)

)2
(dξ, dη, dζ), (19)

where β is a multi-index, r is the polynomial’s order, λm is the linear weight and for this study the central
stencil is assigned a large linear weight of λ1 = 1000 and a value to prevent division by zero of ε = 10−6 is
used similarly to [8, 9], and D is the derivative operator. The smoothness indicator is a quadratic function
of the degrees of freedom (amk ) and can be expressed as a universal mesh-independent oscillation indicator
matrix as defined by Dumbser et al. [54]. The WENO reconstruction is carried out in terms of conserved
for the present study, in order to evaluate the impact of the (LM) treatment. The various reconstruction
polynomials arise from different sets of stencils that satisfy certain geometrical conditions. The reader is
referred to [8, 9] for the definition of geometrical sectors, and references therein, for a detailed explanation
of the different set of geometrical conditions.

6



2.2. Low-Mach Number Treatment
For Godunov type schemes of first-order of accuracy, the theoretical analysis of Thornber et al. [31]

demonstrated that there is an artificially large velocity jump at the cell interfaces at low Mach number re-
gions, when using piecewise constant variable extrapolation. The solution proposed was instead of modifying
the Riemann solver itself to compensate for the strengths of the acoustic waves, to modify the extrapolated
reconstructed values at the cell interface in order to take into account the correct flow physics of low speed
flows. It was also demonstrated for a 5th-order MUSCL scheme that the dissipation rate increases with the
speed of sound and a simple solution to the problem was to modify normal and tangential velocity jumps
at the cell interfaces by a function z as shown below:

u∗L =
(1 + z)uL + (1− z)uR

2
, u∗R =

(1 + z)uR + (1− z)uL
2

, z = min(1,max(ML,MR)). (20)

where u∗L, u
∗
R denotes the modified extrapolated vector of velocities for the left- and right-states respectively,

and uL, uR denotes the extrapolated vector of velocities for the left- and right-states respectively. The key
advantage of this approach is its simplicity, and compactness since the extrapolated variables at the cell
interfaces are only required, which are computed and stored from the solution of the Riemann problem.
Additionally, the reconstructed extrapolated values for pressure and density are not modified since that
would cause excessive diffusion in stationary contact surfaces [31].

Gaussian Quadrature Points for Flux Approximation
Gaussian Quadrature Points for Volume/Surface Integrals

Left State Right State

1st�Order Scheme

(a) 1st-order piecewise constant ap-
proximation

Gaussian Quadrature Points for Flux Approximation
Gaussian Quadrature Points for Volume/Surface Integrals

Left State Right State

2nd�Order Scheme

(b) 2nd-order piecewise linear ap-
proximation

Gaussian Quadrature Points for Flux Approximation
Gaussian Quadrature Points for Volume/Surface Integrals

Left State
Right State

5th�Order Scheme

(c) 5th-order scheme with quatric
polynomial approximation

Figure 2: Schematic representation of intercell flux states for various schemes.

When considering the main difference of higher-order schemes to lower-order ones, apart from the piece-
wise constant, linear, quartic data representation as shown in Fig. 2, is that the velocity jumps between the
left and right states are reduced for smooth flows. This is partially attributed to the fact that for high-order
FV schemes, the size of the reconstruction stencil is proportional to the order of accuracy. This leads to
a higher number of common elements in the stencils of two adjacent cells. For example, the percentage of
common stencil elements between two adjacent cells increases from 40% for a 2nd-order scheme to 85% for
a 5th-order scheme as shown in Fig. 3. Therefore the two states are more similar since their approximation
is based on more similar spatial information.
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Unique Elements in the stencil of �ell i
Unique Elements in the stencil of �ell j
�ommon Elements in the stencils of �ell i and �ell j

�ell i �ell j

(a) 2nd-order

Unique Elements in the stencil of �ell i
Unique Elements in the stencil of �ell j
�ommon Elements in the stencils of �ell i and �ell j

�ell i �ell j

(b) 3rd-order

Figure 3: Schematic of stencil neibourhood for 2nd-order and 3rd-order schemes for elements i and j, on a hybrid unstructured
2D domain.

Based on the findings of Rieper [45], demonstrating that the triangular meshes do not suffer from the
accuracy problem for low Mach number flows as the quadrilateral meshes due to their increased degrees of
freedom, and the observations of Thornber et al. [31] from the DIT test case that the tangential components
of the velocity should need more numerical dissipation than the normal components, a similar LM treatment
of Thornber et al. [31] is pursued. In this case only the normal components n̂ of the velocity at the interfaces
are modified, and not their tangential n‖ as shown in Fig 4.

un̂∗L =
(1 + z)un̂L + (1− z)un̂R

2
, un̂∗R =

(1 + z)un̂R + (1− z)un̂L
2

, z = min(1,max(ML,MR)). (21)

ny

nx

�n

�n
�

ny

nx

n�

n�
�

Figure 4: Schematic representation of normal vector components at the intercell edge between two elements, with the red
coloured boxes representing the Gaussian quadrature points.

where un̂∗L , un̂∗R denotes the modified extrapolated normal component of velocities for the left- and right-
states respectively, and un̂L, u

n̂
R denote the reconstructed extrapolated values for the velocity in the direction

normal to the face/edge for the left- and right-states respectively. This approach is also used by Oßwald et
al. [39], with the Roe Riemann solver [43], labelled LMRoe, where higher dissipation is observed compared
with the original implementation of Thornber et al. [31] for the DIT test case. The benefits offered of using
the similar strategy as Oßwald et al. [39] LM treatment where only the normal components are modified in
terms of accuracy, and robustness compared to the original implementation are explored. The local Mach
number for the left and right states ML,MR are calculated based on the velocity magnitude of all the
velocity components independent of the normal direction in which the flux is computed, similarly to Oßwald
et al. [39].
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2.3. Fluxes approximation & Temporal discretisation
For the evaluation of the convective fluxes the approximate HLLC (Harten-Lax-van Leer-Contact) Rie-

mann solver of Toro [56] is used to compute the intercell numerical flux unless otherwise stated. For the
evaluation of the viscous fluxes the extrapolated interface variables U±i,a and their unlimited gradients ∇U±i,a
from the k-exact least square reconstruction are averaged from two discontinuous states as detailed in [13, 57].
For the gradients additionally penalty terms are included following the formulation of Gassner et al. [58]
for suppressing odd-even decoupling modes in the numerical solutions [59], in the following manner:

∇U =
1

2
(∇UL +∇UR) +

α

Lint
(UR −UL)~n, (22)

where Lint is the distance between the cell centres of adjacent cells, and α = 4/3 similarly to previous
approaches [59, 60]. The solution is advanced in time by the explicit Strong Stability Preserving (SSP)
Runge-Kutta 3rd-order method [61], and a CFL of 0.9 is used for all the test-cases in the present study,
unless otherwise stated.

3. Results

This section presents the results obtained for a variety of cases in two and three dimensions evaluating
the use of the subject LM treatment. The five test cases presented examine the LM treatment’s ability
to resolve low-Mach number flow features while retaining the ability to solve the compressible equations
without introducing numerical artefacts. The employed MUSCL and WENO schemes are frequently used
for compressible flows that can include regions of smooth and sharp-gradients and their performance at the
smooth regions of the flow is the primary focus of this study.

3.1. Subsonic flow past a 2D cylinder
The steady state inviscid flow past a circular cylinder with diameter D = 1 is considered. The cylindrical

computational domain extends 15 diameters in all directions D = 15, with a free-stream Mach number of
M∞ = 0.05, and slip-wall boundary conditions imposed on the cylinder and pressure farfield boundary
conditions imposed on the outer boundary. The flow is initialised with a flow direction parallel to the x-axis.

The simulations were initially undertaken on a hybrid mesh with 8, 290 elements. The mesh is shown in
Fig. 5. The computations are undertaken for 10 convection times t = 10tc, where tc = Diameter

V elocity , which is
sufficient for the initial transients to vanish and the solution to converge. The MUSCL and WENO schemes
are employed, and the original low-Mach number treatment of Thornber et al. [31] denoted as LM1 given
by Equation (20) and the proposed one as LM2 given by Equation (21).
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(b) Close-up of cylinder

Figure 5: Hybrid unstructured mesh used for the subsonic flow past a 2D cylinder.

The contour plots of Mach number at time t = 10tc obtained with MUSCL and WENO schemes can be
seen in Fig. 6. Firstly, it is noticed that the original LM treatment of Thornber et al. [31] directly extended to
hybrid unstructured grids fails to resolve the correct flow features, since artefacts appear in the solution that
are independent of the type and order of the numerical scheme, and the grid resolution. This behaviour can
be justified by the fact that triangles have different dissipation characteristics from quadrilateral elements,
as analysed by Rieper [45]. Hybrid meshes include an interface between quadrilaterals and triangles and a
similar simple, compact approach for LM treatment of the reconstructed values is desired. An algorithm that
treats the quadrilaterals-triangle interfaces in a different manner from quadrilateral-quadrilateral interfaces
would not have been of any value to higher-order FV schemes. The primary reason being that elements of
different types are already included in the stencil and they affect the reconstructed solution.

When applying the low-Mach treatment to the normal vectors of the interfaces, a different behaviour is
noticed. There is an improvement in terms of the correct flow pattern for the MUSCL 2nd-order scheme as
opposed to the results without any treatment. For WENO schemes the situation is slightly more complicated
since an improvement is noticed only for the WENO 3rd-order scheme. The combination of the WENO 5th-
order scheme at this resolution without any LM treatment is sufficient to provide the correct flow pattern.
This supports the numerous previous studies [32, 41, 42] of improving the resolution at low Mach regions by
achieving very high-order spatial accuracy, since the jumps between the two flux states are greatly minimised.
However when the LM2 treatment is applied for the WENO 5th-order scheme an incorrect solutions obtained.
This complements previous studies where for higher-order WENO schemes these type of LM treatment can
contaminate the solution even for structured grid arrangements [62].

10



(a) MUSCL2 (b) MUSCL2 LM1 (c) MUSCL2 LM2

(d) WENO3 (e) WENO3 LM1 (f) WENO3 LM2

(g) WENO5 (h) WENO5 LM1 (i) WENO5 LM2

Figure 6: Contours of Mach number obtained from MUSCL and WENO numerical schemes for the subsonic flow past a 2D
cylinder.

At the current grid resolution the LM2 treatment with the WENO 3rd-order scheme, provide a better
solution indicating that the jumps are sufficiently large for the treatment to provide some benefits.One
question that arises following these results is how the WENO schemes will behave for this test problem if
the grid resolution is substantially increased. For this purpose a finer hybrid mesh consisting of 139, 910
elements as seen in Fig.7 is employed with the WENO schemes and only the LM2 treatment, since we have
not managed to obtain correct results with the LM1 treatment.
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(a) Mesh overview (b) Close-up of cylinder

Figure 7: Finer hybrid unstructured mesh used for the subsonic flow past a 2D cylinder.

From the obtained results as seen in Fig.8 the same trend is observed. The WENO 3rd-order scheme
experiences some minor improvements in the results with the application of the LM2 treatment, the WENO
4th-order scheme does not experience any significant differences in the results using the LM2 treatment, and
on the other hand the WENO 5th-order scheme results are incorrect when the LM2 treatment is employed,
and correct when not employed. The primary reason for this behaviour is that as the order of accuracy is
increased the jumps between the states is reduced, and the balance between dissipation and dispersion is
altered. It needs to be stressed that this undesired behaviour can be controlled if a parametric investigation
is pursued for the parameters contributing to the non-linear weights as seen in Eq. (18), namely the central
stencil linear weight λ1 = 1000 and the parameter used to prevent division by zero ε = 10−6. However this
parametric investigation is beyond the scope of the present study.
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(a) WENO3 (b) WENO4 (c) WENO5

(d) WENO3 LM2 (e) WENO4 LM2 (f) WENO5 LM2

Figure 8: Contours of Mach number obtained from WENO numerical schemes for the subsonic flow past a 2D cylinder on the
finest mesh, 24 contour levels equally spaced between M = 0.01− 0.09.

Since for non-linear WENO schemes where the jumps between the states is significantly reduced compared
to MUSCL 2nd-order schemes, any LM treatment should take into account apart from the velocity jumps,
the dissipation, dispersion and monotonicity characteristics of the numerical scheme in conjunction with the
grid-resolution. This behaviour suggest that the deployment of these type of treatments might provide some
benefits for underesolved turbulent flow simulations. From this section onwards only the LM2 treatment will
be considered (labelled as LM treatment onwards) since we were unable to obtain results free from artefacts
with the original LM1 treatment of Thornber et al. [31] for all the test problems that follow.

3.2. Supersonic flow past a 2D cylinder
The unsteady inviscid supersonic flow past a circular cylinder of radius r = 0.5 is considered. The

semi-cylindrical computational domain extends 2 diameters in all directions D = 2, with a free-stream Mach
number of M∞ = 10.0, a slip-wall boundary conditions imposed on the cylinder, supersonic outflow on the
side outer boundaries, and supersonic inflow on the left semi-circular side of the domain.

The simulations were undertaken on a quadrilateral mesh consisting of 30, 000 elements (200 × 150) as
seen in Fig. 9. The computations are undertaken for 10 convection times t = 10tc, where tc = Diameter

V elocity ,
which is sufficient for the initial transients to vanish, although the solution might not converge due to the
unsteadiness behind the bow-shock. The MUSCL and WENO schemes are employed with and without
the proposed low-Mach number treatment. For these particular flow regimes the region behind the strong
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bow shock is subsonic, therefore it is of interest to evaluate the influence of the present low-Mach number
treatment.

(a) Mesh overview (b) Close-up of cylinder

Figure 9: Quadrilateral mesh used for the supersonic flow past a 2D cylinder.

The HLLC Riemann solver for this flow problem is known to be prone to carbuncle and shock instabilities
behind the bow shock [63] as also noticed for the present schemes in Fig. 10. Since it is not possible to
determine the influence of the low-Mach number treatment using this Riemann solver, and although there
are artificial viscosity techniques to alleviate this as documented by Rodionov [63] it is beyond the scope of
the present study. Therefore the Rusanov [64] Riemann solver is employed which is known to be less prone
to produce carbuncle and shock instabilities, so that the influence of the low-Mach number treatment can
be evaluated.

14



(a) MUSCL2 (b) MUSCL2 LM (c) WENO3 (d) WENO3 LM (e) WENO4 (f) WENO4 LM

Figure 10: Contours of Mach number obtained from various numerical schemes for the supersonic flow past a 2D cylinder test
problem using the HLLC Riemann solver. Twenty five equally spaced Mach number contours from 0.1 to 2.5. All schemes
prone to shock instabilities due to the HLLC Riemann solver employed.

(a) MUSCL2 (b) MUSCL2 LM (c) WENO3 (d) WENO3 LM (e) WENO4 (f) WENO4 LM

Figure 11: Contours of Mach number obtained from various numerical schemes for the supersonic flow past a 2D cylinder test
problem using the Rusanov Riemann solver. Twenty five equally spaced Mach number contours from 0.1 to 2.5.

The results obtained with the Rusanov Riemann solver do not exhibit any carbuncles and shock instabil-
ities appearing as seen in Fig.11. When applying the low-Mach number treatment with MUSCL 2nd-order
and WENO 3rd-order schemes there are not any significant differences in the results, which is the desired
behaviour since the resolution at the low-Mach number region although quite close to the bow-shock is not
deteriorated by the treatment. On the other hand when using the WENO 4th-order scheme wiggles start
appearing in the solution which are not related to the low-Mach number treatment. These wiggles are the

15



results of the reduced numerical dissipation of the scheme, and they initiate at the region behind the shock
and propagate downstream. It needs to be stressed that the present treatment does not deteriorate the
results in subsonic regions of supersonic flows, although a potential improvement could have been noticed if
a boundary layer was resolved and the viscous Navier-Stokes equations solved since the Mach number very
close to the wall would have been very small.

3.3. 2D vortex evolution
The second test-cases involves the flow of the two dimensional vortex evolution, as introduced in the 3rd

International Workshop on High-Order CFD Methods. The compressible Euler equations are solved in a 2D
domain of [0, 0.1]2 with periodic boundary conditions applied to all outer sides. The domain is initialised
with a uniform pressure P∞, temperature T∞ and Mach number M∞. A vortex is introduced of radius R
and strength β, positioned at the centre of the domain (Xc, Yc). The local u,v velocity components and
temperature T are given by:

u = U∞

(
1− β · y − Yc

R
· e−r

2/2

)
, (23)

v = U∞β ·
x−Xc

R
· e−r

2/2, (24)

T = T∞ −
U2
∞β

2

2Cp
· e−r

2

, (25)

where the heat capacity at constant pressure Cp is given by:

Cp = Rgas
γ

γ − 1
, (26)

and the nondimensionalised distance r to the vortex core position is:

r =

√
(x−Xc)

2
+ (y − Yc)2

R
. (27)

The free stream velocity U∞ is given by the definition of:

U∞ = M∞
√
γRgasT∞, (28)

and the fluid pressure p, temperature T and density ρ are prescribed as follows:

ρ∞ =
p∞

RgasT∞
, ρ = ρ∞

(
T

T∞

) 1
γ−1

, p = ρRgasT, (29)

with P∞ = 105N/m2, T∞ = 300K. The “slow” vortex is considered with β = 1/50, and R = 0.005, that
corresponds to a Mach number of M∞ = 0.05. Ideally, the vortex should be transported without distortions
by the flow and the initial condition is the reference solution to be compared with the computed solution
and determine its accuracy.

The aim of employing this problem is to evaluate the capabilities of the LM treatment to preserve vorticity
in an unsteady inviscid flow by employing the WENO reconstruction with spatial orders of accuracy ranging
from 2nd-order to 7th. Meshes consisting of purely quadrilateral and triangular elements are considered,
of various resolutions. In addition, randomly perturbed meshes based on the uniform quadrilateral and
triangular elements are considered, that are randomly perturbed by a maximum distance of δmax = 0.15D
in both x,y Cartesian coordinates with D being the diameter of inscribed circle of the elements. The meshes
are shown in Fig. 12 and the mesh statistics are outlined in Table 1.

The simulation is run for T = 50tc convective periods, with a period being given by tc = Length/U∞,
since maintaining the correct vortex pattern over a long period of time is the primary focus of this test
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problem.

Table 1: Mesh statistics for the 2D vortex evolution test problem.

Mesh Name Edges per side Quadrilaterals Triangles
UPQ32,PQ32 32 1024 -
UPQ64,PQ64 64 4096 -
UPQ128,PQ128 128 16384 -
UPT32,PT32 32 - 2048
UPT64,PT64 64 - 8192
UPT128,PT128 128 - 32768

(a) Quadrilateral mesh (b) Quadrilateral perturbed
mesh

(c) Triangular mesh (d) Triangular perturbed
mesh

Figure 12: Coarse meshes used for the vortex evolution test in two space dimensions.

All grid resolutions used apart from the finest (128 edges) meshes, are considered to be relatively coarse
for the vortex evolution of this particular test case. This scenario is representative of the resolutions used
close to the boundary layer of LES simulations, since for these low Mach number flow regions it is expected
to correspond to a severely underesolved simulation. It is evident from Fig. 13 that the vortex distortion
is increased as the number of periods increase, even for a WENO 3rd-order scheme on the UPT64 mesh,
suggesting that very high-order schemes might be required to maintain the vortex structure after 50 periods.

(a) t = 0 (b) t = 5tc (c) t = 50tc

Figure 13: Mach number contour plots at different times for the vortex evolution test in two space dimensions obtained with
a WENO 3rd-order scheme on the UPT64 triangular mesh without low-Mach number treatment.
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(a) t = 0 (b) t = 50tc (c) t = 50tc LM

Figure 14: Mach number contour plots on top of mesh overlay for the vortex evolution test in two space dimensions obtained
with a WENO 7th-order scheme on the PQ64 perturbed quadrilateral mesh

(a) t = 0 (b) t = 50tc (c) t = 50tc LM

Figure 15: Mach number contour plots for the vortex evolution test in two space dimensions obtained with a WENO 7th-order
scheme on the PT32 perturbed triangular mesh.

The 7th-order scheme with LM treatment, demonstrates decreased distortions in the vortex structure
compared with the solution of the same schemes on the PQ64 mesh without LM fix, as shown in Fig. 14
where the bounds of the contour plots remain closer to their reference values. This trends is not present for
the solution on triangular mesh where there are not as significant benefits as for the quadrilateral cells with
the employment of the LM treatment as demonstrated in Fig. 15.
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(b) Perturbed Elements

Figure 16: Evolution of L2 error of u velocity over 50 periods for the WENO 3rd-order schemes on unperturbed and perturbed
meshes for the vortex evolution test in two space dimensions.
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Figure 17: Evolution of L2 error norm of u velocity over 50 periods for the WENO 5th-order schemes on unperturbed and
perturbed meshes for the vortex evolution test in two space dimensions.
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Figure 18: Evolution of L2 error norm of u velocity over 50 periods for the WENO 7th-order schemes on unperturbed and
perturbed meshes for the vortex evolution test in two space dimensions.

The evolution of the L2 error norm for 3rd-, 5th- and 7th-order schemes on all mesh types, and resolutions
are shown in Fig. 16, Fig. 17, and Fig. 18 respectively. It is noticed, that for the grid resolutions of 32 edges
per side, the 5th- and 7th-order schemes benefit the most from the LM treatment, since this grid resolution
is quite coarse. For all the schemes we notice a smaller error for the entire duration of the vortex evolution
when the LM treatment is utilised. The impact of this treatment is more pronounced on grid resolutions
comprised of 32 edges per side of the quadrilateral meshes (PQ32, UPQ32), and mostly with WENO 7th-
order scheme. Even the triangular meshes for all the numerical schemes and all the grid resolutions benefit
from the low-Mach treatment but not as much as the quadrilateral cells.
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Figure 19: L2 error norm of u velocity at 50 periods for all the schemes on unperturbed and perturbed meshes for the vortex
evolution test in two space dimensions.
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Figure 20: L2 error norm of u velocity at 50 periods with respect to CPU time (Number of CPUs x Wallclock Time in seconds)
for all the schemes on unperturbed and perturbed meshes for the vortex evolution test in two space dimensions.

The variations of L2 error norm after 50 periods with respect to the spatial order of accuracy for all the
mesh types and resolutions are shown in Fig. 19. The predictions do not considerably differ between the
perturbed and unperturbed meshes, since the employed WENO schemes remove scaling effects by transfor-
mation to a reference system as detailed in [8]. The computed solutions indicate that with the LM treatment
there is an improvement in the predictions of all mesh types and schemes. However, the solutions obtained
with the LM treatment have a consistent variation as the spatial-order of accuracy is increased. Specifi-
cally, the greatest improvement is observed for the 4th-order and 6th-order scheme corresponding to a 3rd-
and 5th-order polynomial, respectively. This behaviour suggest that it could be related to the odd-order
polynomials and their associated dispersion characteristics, which is amplified by the relatively coarse grid
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resolutions employed for this study. Moreover, the step pattern observed with the 7th-order scheme on the
unperturbed meshes could be associated with the time-step selection and the CFL number utilised, since it
is not evident on the corresponding perturbed meshes where their time-step is smaller due to the distortion
of the mesh and the smaller radius of inscribed circle within each element. Since our temporal scheme is
3rd-order accurate, it could suggest that the combination of a 7th-order accurate scheme in space requires
a smaller time step than the one defined by the CFL condition, due to the limited computational budget
available a sensitivity to the time-step size could be pursue in the future.

The variation of L2 error norm after 50 periods with respect to the CPU time for all the mesh types,
and numerical schemes is shown in Fig. 20. The LM treatment provides some benefits in terms of compu-
tational efficiency. A solution can be obtained with a lower-order scheme with the LM treatment at smaller
computational budget compared with a higher-order schemes without LM fix with similar accuracy. For
example, a 6th-order scheme with the LM treatment requires significantly less time to reach the same level
of error as a 7th-order scheme without any treatment.

Therefore, the fact that the original implementation of the LM treatment by Thornber et al. [31] has
been primarily focused on improving the behaviour of the schemes for underesolved simulated flows, comes
into play in this test-case since the combination of all the schemes and all grid types benefit from the LM
treatment both in terms of vortex structure resolution and computational efficiency.

3.4. 3D Taylor-Green vortex
The inviscid Taylor-Green vortex flow is considered as the first three dimensional cases for this work.

The flow is benchmark cases for evaluating the vortex stretching and dissipation characteristics of numerical
schemes by studying the production and break-down of turbulence structures. It has been widely employed
by many authors to assess the behaviour of various numerical schemes [13, 65–70], in the context of Implicit
Large Eddy Simulation (ILES) and how the numerical schemes themselves can possess characteristics that
can potentially act as a Sub-Grid Scale (SGS) model. The DNS results of Brachet et. al [71] are used for
reference. The computational domain is defined as Ω = [0, 2π]3 with periodic boundary conditions. This
formulation of the Taylor-Green vortex flow problem is initialized with the following velocity and pressure
fields:

u(x, y, z, 0) = sin(kx)cos(ky)cos(kz), (30)

v(x, y, z, 0) = −cos(kx)sin(ky)cos(kz), (31)

w(x, y, z, 0) = 0, (32)

ρ(x, y, z, 0) = 1, (33)

p(x, y, z, 0) = 100 +
ρ

16
[cos(2z) + 2] · [cos(2x) + cos(2y)]. (34)

The subject initial condition corresponds to an initial Mach number M ≈ 0.08, with k = 2π/λ = 1
being the wavenumber. Simulations were carried out using the MUSCL 2nd-order, WENO-3rd, and WENO-
5th order schemes with two different types of meshes consisting of hexahedral and tetrahedral elements
as shown in Fig. 21 and with the mesh statistics outlined in Table 2. Higher-order schemes of 6th- and
7th-order of accuracy were not pursued due to the computational budget available. All the simulations were
intentionally performed in coarse meshes, to determine the impact of the LM treatment with the subject
numerical schemes employed in obtaining physically meaningful results for underesolved simulation. The
simulations were run up to t = 20 for obtaining the dissipation statistics. The evolution of large symmetrical
structures to smaller ones transit to fully turbulent flow is illustrated in Fig. 22.
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(a) Hexahedral mesh (b) Tetrahedral mesh

Figure 21: Coarse meshes used for the 3D Taylor-Green vortex test problem.

Table 2: Mesh statistics for the 3D Taylor-Green vortex test problem.

Mesh Name Edges per side Hexahedrals Tetrahedrals
16H 16 4096 -
32H 32 32768 -
64H 64 262144 -
16T 16 - 24576
32T 32 - 196608
64T 64 - 1572864

(a) t = 1.07 (b) t = 4.47 (c) t = 6.63

(d) t = 9.90 (e) t = 10.99 (f) t = 16.61

Figure 22: Isosurfaces of Q criterion at Q = 0.5, coloured by kinetic energy at different instants for the 3D Taylor-Green vortex
test problem using a WENO 5th-order scheme on the finest 64H hexahedral mesh with the LM treatment.
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Since our aim is to employ the present numerical schemes without resorting to an explicit SGS model,
the behaviour of the dissipation mechanism with respect to the LM treatment is of interest. Plotted in Fig.
23, Fig. 24, and Fig. 25 is the volumetrically averaged kinetic energy decay in time for both hexahedral
and tetrahedral elements in three different resolutions: 163, 323 and 643. The results of Shu [70], using a
structured WENO-5th order accurate scheme are also included for comparison. The volumetrically averaged
kinetic energy decay is typically applied as a mean of quantifying the numerical dissipation of a scheme.
From the plots in Fig. 23, Fig. 24, and Fig. 25 it can be observed that the tetrahedral meshes outperform
the hexahedral meshes in terms of dissipation characteristics when the LM treatment is not used which
agrees with the findings of a previous study by Tsoutsanis et al. [13], due to their stencils more compact
design when comparing the same order of accuracy. For the tetrahedral meshes there are not a significant
benefits with the LM treatment; however, the treatment greatly improves the dissipation characteristics for
hexahedral elements and especially for the MUSCL 2nd-order scheme. It can be seen that at the coarsest
resolution of the present hexahedral meshes the obtained results are closer to that of Shu [70]. At the
medium grid resolution, all orders of accuracy can obtain a solution with similar dissipative characteristics
of the Shu [70] results of the 5th-order on a finer grid (643 vs. 323). The results obtained with the finest
hexahedral meshes exhibit an improvement over the Shu [70] small mesh while the 643 LM treatment with
WENO-5th order scheme matches that of the Shu [70] on the 1283 mesh.
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Figure 23: Total kinetic energy K temporal evolution for various schemes, and LM treatment for the 3D Taylor-Green vortex
test problem at the coarse grid resolutions, and comparison with the WENO obtained solutions of [70].
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Figure 24: Total kinetic energy K temporal evolution for various schemes, and LM treatment for the 3D Taylor-Green vortex
test problem at the medium grid resolutions, and comparison with the WENO obtained solutions of [70].
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Figure 25: Total kinetic energy K temporal evolution for various schemes, and LM treatment for the 3D Taylor-Green vortex
test problem at the finest grid resolutions, and comparison with the WENO obtained solutions of [70].

By computing the kinetic energy dissipation rate −dK/dt as shown in Fig. 26, Fig 27, and Fig 28, it
is possible to examine the resolved physical viscosity (or corresponding Reynolds number) and the inherent
numerical dissipation. It can be seen that as the mesh resolution increases or if the order of accuracy increases
the kinetic energy dissipation rates approach the DNS results of Brachet et al. [71] at higher Reynolds
number. The tetrahedral meshes tend to a higher Reynolds number than their equivalent hexahedral meshes
without the LM treatment. Considerable improvements are noticed for the hexahedral type simulations with
respect to kinetic energy dissipation rate estimations with the LM fix. The additional structure predicted
near t ≈ 5−6 for the finest grid resolution are attributed to specific aspects of the ILES framework provided
by the numerical schemes, and are present mostly in multidimensional numerical schemes as outlined in
[65]. Furthermore, the double-peak structure of the dissipation rate near t ≈ 9 for the finest tetrahedral
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meshes with WENO schemes, has been previously [65] linked to dispersive properties of the scheme, since
dissipative schemes do not exhibit this structure. This in turn highlights that the tetrahedral meshes are
mostly susceptible to dispersion errors rather than dissipative errors, as seen by the noise in their the kinetic
energy dissipation rate −dK/dt in Fig. 26, Fig 27, and Fig 28 for WENO 5th-order scheme, that is more
prominent in the coarse grid resolution. Further investigation of this mechanism is to be pursued in the near
future.
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Figure 26: Total kinetic energy dissipation rate dK/dt temporal evolution for various schemes, grid resolutions, and LM
treatment for the 3D Taylor-Green vortex test problem, and comparison with the DNS reference solutions of [71].
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Figure 27: Total kinetic energy dissipation rate dK/dt temporal evolution for various schemes, grid resolutions, and LM
treatment for the 3D Taylor-Green vortex test problem, and comparison with the DNS reference solutions of [71].
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Figure 28: Total kinetic energy dissipation rate dK/dt temporal evolution for various schemes, grid resolutions, and LM
treatment for the 3D Taylor-Green vortex test problem, and comparison with the DNS reference solutions of [71].

In Fig. 29 and Fig. 30, the conservation error in terms total kinetic energy for all the schemes is plotted
with respect to number of cells and CPU time respectively. In the incompressible limit kinetic energy can
only be damped by large scale viscous effects, either by explicit SGS models, or by the viscosity of the
numerical scheme itself [65]. Therefore, this measure is used to evaluate the numerical dissipation effects
of various schemes. The kinetic energy conservation error presented in Fig. 29 demonstrates lower error
for the tetrahedral meshes than the hexahedral meshes with respect to the number of cells without the
LM treatment. The situation is significantly altered when the LM treatment is used, since the hexahedral
meshes with the LM treatment provide smaller errors than the tetrahedral meshes for similar number of
cells as shown in Fig. 29. This pattern is repeated for the variation of error with respect to CPU time as
shown in Fig. 30. A negative impact on the performance of the WENO 5th-order scheme can be noticed for
the LM treatment on the coarsest tetrahedral mesh which is assumed to be related to the dispersive errors
present.
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Figure 29: Conservation error at t = 6 in terms of total kinetic energy and number of cells for various schemes, grid resolutions,
and LM treatment for the 3D Taylor-Green vortex test problem.
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Figure 30: Conservation error at t = 6 in terms of total kinetic energy and CPU time (Number of CPUs x Wallclock Time in
seconds) for various schemes, grid resolutions, and LM treatment for the 3D Taylor-Green vortex test problem.

The LM treatment provides significant improvement in terms of the error measure for hexahedral cells.
The CPU time taken for a WENO 3th-order scheme with the LM treatment is at least one order of magnitude
smaller than a WENO 5th-order scheme without LM treatment as shown in Fig.30 for the similar error.
The primary reason for that is that the jump between the intercell states is larger for the 5th-order scheme
therefore the impact of this treatment is more prominent. Therefore, savings in terms of CPU time can be
expected using this LM treatment, since lower-order methods can be utilised and provide accuracy equivalent
to a more costly higher-order scheme. On the other hand the LM treatment does not offer any significant
benefits for the tetrahedral meshes, although it does not degrade their performance as also documented by
Rieper [45], but it did not produce the inaccurate results of the original treatment as experienced by Rieper
[45].

3.5. SD7003 Aerofoil
The last test-case showcases the improvements of the LM treatment for hybrid unstructured grids for

engineering applications. The test cases concerns the turbulent flow over the SD7003 wing at Mach number
of M = 0.2, angle of attack of α = 8◦ and Reynolds number Re = 60, 000 based on the chord length.
This flow is characterised by a laminar separation region, which reattaches further downstream forming a
Laminar Separation Bubble (LSB), and along the separation bubble transition to turbulence occurs. This
test case is widely used to document the performance of various numerical schemes in the context of LES,
for predicting separation, transition and turbulent flow [14,24 ,72 ,73 ].

For this case a hybrid unstructured mesh of approximately 5.6 million cells is generated, consisting of
hexahedral and prismatic cells as illustrated in Fig.31 . The domain extends 20c upstream and downstream,
and 0.2c in the span-wise direction, where c is the chord length. The grid resolution at the boundary layer
region gives a y+ ≈ 1 at the first cell off the surface, 80 cells are used in the span-wise direction, 400 and
150 cells are used for the upper and lower part of the aerofoil, and 42 layers are extruded in the direction
normal to the surface with an expansion factor of 1.035. The leading edge and trailing edge grid spacings
correspond to x+ ≈ 2 with an expansion factor 1.035, and in the span-wise direction a z+ ≈ 84 is used.
Periodic boundary conditions are used in the span-wise direction, no-slip boundary conditions at the surface
of the aerofoil and free-stream conditions at the farfield. The WENO 4th-order schemes is employed, a CFL
number of 0.9 is set along with the explicit Runge-Kutta 3rd-order scheme, that results in time step size
of ∆t ≈ (10−4)tc, where tc = c/U∞. The simulations were run for t = 20tc to develop the flow, and an
additional 20tc for time averaging.
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Figure 31: Slice of the mesh used for the SD7003 test problem.

Contours of time and span-averaged streamwise velocity are shown in Fig. 32, where it can be noticed
that the laminar separation bubble near the leading edge on the suction side of the aerofoil, is smaller for the
with the LM treatment compared without the LM treatment. The separation and reattachment positions
are in better agreement with the reference data sets [24, 72, 73] when the LM treatment is employed as
it shown in Table 3. Without engaging the LM treatment, the reattachment position is predicted further
downstream, worsening the agreement with the reference data.

(a) without LM treatment (b) with LM treatment

Figure 32: Span-averaged and time-averaged stream-wise velocity contour for the SD7003 test problem using WENO 4th-order
schemes.

The instantaneous isosurfaces of q-criterion colored by the velocity magnitude are shown in Fig. 33 for the
fully developed flow after 20tc. Smaller flow structures seem to be captured by the numerical schemes with
the LM fix, which is inline with findings from the Taylor-Green vortex flow, where a decreased dissipation
is observed for hexahedral dominant meshes.
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(a) without LM treatment (b) with LM treatment

Figure 33: Instantaneous isosurfaces of Q criterion coloured by velocity magnitude for the SD7003 test problem using WENO
4th-order schemes.

The span-averaged and time-averaged pressure coefficient CP distribution is plotted in Fig. 34, along with
the reference data sets [24, 72, 73]. When the LM treatment is enabled the results are in closer agreement
with the reference data sets in particular with the ones of Beck et al. [73],including the location of the
transition region, where without it the transition appears further downstream. The LM treatment improves
the results for the present test problem for all the parameters investigated, including pressure distribution
and range of turbulent scales resolved. This is achieved without any significant increase in cost since the
treatment is compact, local and inexpensive, highlighting that the results of compressible flow simulations
can experience significant improvements in low Mach regions of the flow, even for higher-order numerical
schemes.
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Figure 34: Span-averaged and time-averaged pressure coefficient CP distribution along the chord of the SD7003 aerofoil, using
WENO 4th-order schemes and comparison with reference datasets from Garmann et al. [72], Vermeire et al. [24] and Beck et
al. [73]

Table 3: Obtained results for the SD7003 test cases using WENO 4th-order schemes, and comparison with reference datasets.

Data set CL CD xsep/c xrea/c Method
Present W4 0.903 0.058 0.038 0.391 4th-order WENO FV

Present W4-LM 0.928 0.051 0.029 0.329 4th-order WENO FV
Garmann et al. [72] 0.969 0.039 0.023 0.259 6th-order FD
Vermeire et al. [24] 0.941 0.049 0.045 0.315 5th-order FR
Beck et al. [73] 0.932 0.050 0.030 0.336 8th-order DG

4. Conclusions

In this work, a low-Mach number treatment is presented based on the original formulation of Thornber
et al. [31] and the revised one by Oßwald et al. [39]. When directly applying the original formulation
of Thornber et al. [31] to unstructured, multidimensional FV schemes inaccurate results were obtained.
The revised formulation based on the approach of Oßwald et al. [39] only modifies the velocities in the
normal direction of the intercell states, since the tangential velocities need more dissipation according to
Thornber et al. [31] and can be used with any Riemann solver. This treatment has been applied to a series
of test problems including the subsonic and supersonic flow past a cylinder, the 2D vortex evolution, the
3D Taylor-Green vortex, and the turbulent flow past the SD7003 aerofoil on meshes consisting of various
element types.

The obtained results indicate that the LM treatment can actually improve the dissipation characteristics
of the schemes, especially at low-Mach number flow regions in the presence of quadrilateral and hexahedral
elements. However, for triangular and tetrahedral elements the use of this treatment does not provide as
significant benefits as for other element types. Some combinations of numerical schemes and grid resolutions
for these elements are characterised by dispersion errors and a further investigation of this mechanism is
underway for future studies. However, the LM treatment can provide significant benefits in CPU time in
the sense that a lower-order method can be used and provide equivalent results with a higher-order method
without the treatment particularly for quadrilateral and hexahedral elements, that are usually employed
close to the boundary layer region.

The main goal of this treatment is not to simulate with great accuracy very low-Mach number flows,
where the use of the incompressible equations would be more appropriate, but to improve the resolution
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of the schemes at low-Mach number regions that are present in compressible flow simulations that can
include regions of sharp and smooth flow gradients. It has to be stressed that the majority of the LM
treatments take into account only the local-Mach number, in order to modify the variables accordingly,
however other parameters such as the dissipation and dispersion properties in conjunction with the local
grid-resolution should also be taken into account since it was found that different types of meshes show
different sensitivity in these treatments. For turbulent flow simulations these low-Mach number regions
are close to the boundary layer are most often discretised by hexahedral or prismatic elements. This LM
treatment resulted in improvements in resolving these low-Mach regions of turbulent flows accurately in the
SD7003 aerofoil test problem, and it indicates that it can benefit higher-order schemes as well. Finally the
compact, simple and inexpensive nature of this treatment makes it an appealing candidate solution to be
implemented in various compressible CFD codes.

Acknowledgements

The authors would like to thank Jaguar Land Rover for granting permission to publish this work. The
work has been undertaken due to funding from EPSRC Award. Ref. Number: 13794. The authors ac-
knowledge the computing time on the UK national high-performance computing service ARCHER that was
provided through the UK Turbulence Consortium in the framework of the EPSRC grant EP/L000261/1.
Panagiotis Tsoutsanis acknowledges the computing time at HAZELHEN at the High-Performance Com-
puting Center Stuttgart (HLRS), Germany and SuperMUC at the Leibniz Supercomputing Centre (LRZ)
in Garching, Germany in the framework of the PRACE project funded in part by the EU Horizon 2020
research and innovation programme (2014-2020) under grant agreement 653838. The authors would also
like to acknowledge the constructive comments, and suggestions provided by the anonymous reviewers that
greatly improved the quality of the article.

References

[1] M. Dumbser, M. Kaser, V. Titarev, E. Toro, Quadrature-free non-oscillatory finite volume schemes on unstructured meshes
for nonlinear hyperbolic systems, Journal of Computational Physics 226 (1) (2007) 204–243.

[2] M. Dumbser, D. Balsara, E. Toro, C.-D. Munz, A unified framework for the construction of one-step finite volume and
discontinuous Galerkin schemes on unstructured meshes, Journal of Computational Physics 227 (18) (2008) 8209–8253.

[3] A. Haselbacher, A WENO reconstruction algorithm for unstructured grids based on explicit stencil construction, 2005,
pp. 3369–3378.

[4] W. Li, Y. Ren, Quadrature-free non-oscillation finite volume scheme for solving Navier-Stokes equations on unstructured
grids, Vol. 1376, 2011, pp. 639–641.

[5] X. Nogueira, L. Cueto-Felgueroso, I. Colominas, F. Navarrina, M. Casteleiro, A new shock-capturing technique based on
moving least squares for higher-order numerical schemes on unstructured grids, Computer Methods in Applied Mechanics
and Engineering 199 (37-40) (2010) 2544–2558.

[6] C. Ollivier-Gooch, Quasi-ENO schemes for unstructured meshes based on unlimited data-dependent least-squares recon-
struction, Journal of Computational Physics 133 (1) (1997) 6–17.

[7] C. O. Gooch, M. V. Altena, A high-order-accurate unstructured mesh finite-volume scheme for the advection-diffusion
equation, Journal of Computational Physics 181 (2) (2002) 729–752.

[8] P. Tsoutsanis, V. Titarev, D. Drikakis, WENO schemes on arbitrary mixed-element unstructured meshes in three space
dimensions, Journal of Computational Physics 230 (4) (2011) 1585–1601.

[9] V. Titarev, P. Tsoutsanis, D. Drikakis, WENO schemes for mixed-element unstructured meshes, Communications in
Computational Physics 8 (3) (2010) 585–609.

[10] W. Wolf, J. Azevedo, High-order ENO and WENO schemes for unstructured grids, International Journal for Numerical
Methods in Fluids 55 (10) (2007) 917–943.

[11] Z. Xu, Y. Liu, C.-W. Shu, Hierarchical reconstruction for discontinuous Galerkin methods on unstructured grids with a
WENO-type linear reconstruction and partial neighboring cells, Journal of Computational Physics 228 (6) (2009) 2194–
2212.

[12] Z. Xu, Y. Liu, C.-W. Shu, Hierarchical reconstruction for spectral volume method on unstructured grids, Journal of
Computational Physics 228 (16) (2009) 5787–5802.

[13] P. Tsoutsanis, A. Antoniadis, D. Drikakis, WENO schemes on arbitrary unstructured meshes for laminar, transitional and
turbulent flows, Journal of Computational Physics 256 (2014) 254–276.

[14] B. Vermeire, P. Vincent, On the properties of energy stable flux reconstruction schemes for implicit large eddy simulation,
Journal of Computational Physics 327 (2016) 368–388.

33



[15] B. Cockburn, C.-W. Shu, Runge-Kutta discontinuous Galerkin methods for convection-dominated problems, Journal of
Scientific Computing 16 (3) (2001) 173–261.

[16] J. Dennis, R. Nair, H. Tufo, M. Levy, T. Voran, Development of a scalable global discontinuous Galerkin atmospheric
model, Int. J. Comp. Sci. Eng.

[17] A. Uranga, P.-O. Persson, M. Drela, J. Peraire, Implicit large eddy simulation of transition to turbulence at low Reynolds
numbers using a discontinuous Galerkin method, International Journal for Numerical Methods in Engineering 87 (1-5)
(2011) 232–261.

[18] J. Zhu, J. Qiu, C.-W. Shu, M. Dumbser, Runge-Kutta discontinuous Galerkin method using WENO limiters ii: Unstruc-
tured meshes, Journal of Computational Physics 227 (9) (2008) 4330–4353.

[19] Z. Wang, Spectral (finite) volume method for conservation laws on unstructured grids. basic formulation, Journal of
Computational Physics 178 (1) (2002) 210–251.

[20] Z. Wang, Y. Liu, Spectral (finite) volume method for conservation laws on unstructured grids. ii. extension to two-
dimensional scalar equation, Journal of Computational Physics 179 (2) (2002) 665–697.

[21] Z. Wang, L. Zhang, Y. Liu, Spectral (finite) volume method for conservation laws on unstructured grids iv: Extension to
two-dimensional systems, Journal of Computational Physics 194 (2) (2004) 716–741.

[22] Y. Zhou, Z. Wang, Implicit large eddy simulation of transitional flow over a SD7003 wing using high-order spectral
difference method, 2010.

[23] C. Breviglieri, A. Maximiliano, E. Basso, J. Azevedo, Improved high-order spectral finite volume method implementation
for aerodynamic flows, 2009.

[24] B. Vermeire, F. Witherden, P. Vincent, On the utility of gpu accelerated high-order methods for unsteady flow simulations:
A comparison with industry-standard tools, Journal of Computational Physics 334 (2017) 497–521.

[25] R. Abgrall, On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation, Journal of
Computational Physics 114 (1) (1994) 45–58.

[26] D. Stanescu, W. Habashi, Essentially nonoscillatory Euler solutions on unstructured meshes using extrapolation, AIAA
Journal 36 (8) (1998) 1413–1416.

[27] G. S. Jiang, C. W. Shu, Efficient implementation of weighted ENO schemes, Journal of Computational Physics 126 (1)
(1996) 202–228.

[28] J. Shi, C. Hu, C.-W. Shu, A technique of treating negative weights in WENO schemes, Journal of Computational Physics
175 (1) (2002) 108–127.

[29] C.-W. Shu, S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes, Journal of Compu-
tational Physics 77 (2) (1988) 439–471.

[30] O. Friedrich, Weighted essentially non-oscillatory schemes for the interpolation of mean values on unstructured grids,
Journal of Computational Physics 144 (1) (1998) 194–212.

[31] B. Thornber, A. Mosedale, D. Drikakis, D. Youngs, R. Williams, An improved reconstruction method for compressible
flows with low Mach number features, Journal of Computational Physics 227 (10) (2008) 4873–4894.

[32] X. Nogueira, L. RamÃrez, S. Khelladi, J.-C. Chassaing, I. Colominas, A high-order density-based finite volume method
for the computation of all-speed flows, Computer Methods in Applied Mechanics and Engineering 298 (2016) 229–251.

[33] F. Qu, C. Yan, D. Sun, Z. Jiang, A new Roe-type scheme for all speeds, Computers and Fluids 121 (2015) 11–25.
[34] Z. Li, Y. Zhang, H. Chen, A low dissipation numerical scheme for implicit large eddy simulation, Computers and Fluids

117 (2015) 233–246.
[35] S. Matsuyama, Performance of all-speed ausm-family schemes for DNS of low Mach number turbulent channel flow,

Computers and Fluids 91 (2014) 130–143.
[36] S. Shanmuganathan, D. Youngs, J. Griffond, B. Thornber, R. Williams, Accuracy of high-order density-based compressible

methods in low Mach vortical flows, International Journal for Numerical Methods in Fluids 74 (5) (2014) 335–358.
[37] Y. Liu, M. Sun, Accuracy improvement of axisymmetric bubble dynamics using low Mach number scaling, Computers and

Fluids 90 (2014) 147–154.
[38] X.-S. Li, C.-W. Gu, Mechanism of Roe-type schemes for all-speed flows and its application, Computers and Fluids 86

(2013) 56–70.
[39] K. Oswald, A. Siegmund, P. Birken, V. Hannemann, A. Meister, L2roe: A low dissipation version of Roe’s approximate

Riemann solver for low Mach numbers, International Journal for Numerical Methods in Fluids 81 (2) (2016) 71–86.
[40] Y. Shen, G. Zha, Low diffusion e-cusp scheme with implicit high order WENO scheme for preconditioned Navier-Stokes

equations, Computers and Fluids 55 (2012) 13–23.
[41] F. Rieper, A low-Mach number fix for Roe’s approximate Riemann solver, Journal of Computational Physics 230 (13)

(2011) 5263–5287.
[42] F. Rieper, On the dissipation mechanism of upwind-schemes in the low Mach number regime: A comparison between Roe

and HLL, Journal of Computational Physics 229 (2) (2010) 221–232.
[43] P. Roe, Approximate riemann solvers, parameter vectors, and difference schemes, Journal of Computational Physics 43 (2)

(1981) 357–372. doi:10.1016/0021-9991(81)90128-5.
[44] F. Bassi, C. De Bartolo, R. Hartmann, A. Nigro, A discontinuous Galerkin method for inviscid low Mach number flows,

Journal of Computational Physics 228 (11) (2009) 3996–4011.
[45] F. Rieper, G. Bader, The influence of cell geometry on the accuracy of upwind schemes in the low Mach number regime,

Journal of Computational Physics 228 (8) (2009) 2918–2933.
[46] P. Tsoutsanis, I. Kokkinakis, L. Konozsy, D. Drikakis, R. Williams, D. Youngs, An investigation of the accuracy and effi-

ciency of structured and unstructured, compressible and incompressible methods for the vortex pairing problem, Computer
Methods in Applied Mechanics and Engineering 293 (2015) 207–231.

34

http://dx.doi.org/10.1016/0021-9991(81)90128-5


[47] A. F. Antoniadis, P. Tsoutsanis, D. Drikakis, Numerical accuracy in RANS computations of high-lift multi-element airfoil
and aircraft configurations, in: AIAA (Ed.), 53rd AIAA Aerospace Sciences Meeting, no. AIAA 2015-0317, Kissimmee,
Florida, 2015.

[48] D. Drikakis, A. F. Antoniadis, P. Tsoutsanis, I. Kokkinakis, Z. Rana, Azure: An advanced cfd software suite based on
high-resolution and high-order methods, in: AIAA (Ed.), 53rd AIAA Aerospace Sciences Meeting, no. AIAA 2015-0813,
Kissimmee, Florida, 2015.

[49] A. F. Antoniadis, D. Drikakis, I. Kokkinakis, P. Tsoutsanis, Z. Rana, High-order methods for hypersonic shock wave
turbulent boundary layer interaction flow, in: AIAA (Ed.), 20th AIAA International Space Planes and Hypersonic Systems
and Technologies Conference, no. AIAA 2015-3524, Glasgow, Scotland, 2015.

[50] A. Antoniadis, P. Tsoutsanis, D. Drikakis, Assessment of high-order finite volume methods on unstructured meshes for
rans solutions of aeronautical configurations, Computers and Fluids 146 (2017) 86–104.

[51] P. Tsoutsanis, Extended bounds limiter for high-order finite-volume schemes on unstructured meshes, Journal of Compu-
tational Physics 362 (2018) 69–94.

[52] P. Tsoutsanis, A. Antoniadis, J. K.W., Improvement of the computational performance of a parallel unstructured WENO
finite volume CFD code for Implicit Large Eddy Simulation, Computer and Fluids article (2018) in press. doi:doi.org/
10.1016/j.compfluid.2018.03.012.

[53] P. Tsoutsanis, D. Drikakis, A high-order finite-volume method for atmospheric flows on unstructured grids, Journal of
Coupled Systems and Multiscale Dynamics 4 (3) (2016) 170–186.

[54] M. Dumbser, M. Käser, V. A. Titarev, E. F. Toro, Quadrature-free non-oscillatory finite volume schemes on unstructured
meshes for nonlinear hyperbolic systems, Journal of Computational Physics 226 (1) (2007) 204–243.

[55] T. J. Barth, D. C. Jespersen, The design and application of upwind schemes on unstructured meshes, 27th Aerospace
Sciences Meeting.

[56] E. Toro, M. Spruce, W. Speares, Restoration of the contact surface in the hll-riemann solver, Shock Waves 4 (1) (1994)
25–34.

[57] L. Ivan, C. Groth, High-order solution-adaptive central essentially non-oscillatory (ceno) method for viscous flows, Journal
of Computational Physics 257 (PA) (2014) 830–862. doi:10.1016/j.jcp.2013.09.045.

[58] G. Gassner, F. Lorcher, C.-D. Munz, A contribution to the construction of diffusion fluxes for finite volume and discon-
tinuous galerkin schemes, Journal of Computational Physics 224 (2) (2007) 1049–1063.

[59] A. Jalali, M. Sharbatdar, C. Ollivier-Gooch, Accuracy analysis of unstructured finite volume discretization schemes for
diffusive fluxes, Computer and Fluids 101 (2014) 220–232.

[60] H. Nishikawa, Robust and accurate viscous discretisation via upwind scheme-i: Basic principle, Computer and Fluids 49
(2011) 62–86.

[61] S. Gottlieb, On high order strong stability preserving Runge-Kutta and multi step discretizations, Journal of Scientific
Computing 25 (112) (2005) 105–128.

[62] I. Kokkinakis, D. Drikakis, Implicit large eddy simulation of weakly-compressible turbulent channel flow, Computer Meth-
ods in Applied Mechanics and Engineering 287 (2015) 229–261.

[63] A. V. Rodionov, Artificial viscosity in Godunov-type schemes to cure the carbuncle phenomenon, Journal of Computational
Physics 345 (2017) 308–329.

[64] V. Rusanov, Calculation of interaction of non-steady shock waves with obstacles, J Comput Math Phys USSR 1 (1961)
267â79.

[65] D. Drikakis, C. Fureby, F. Grinstein, D. Youngs, Simulation of transition and turbulence decay in the Taylor-Green vortex,
Journal of Turbulence 8 (2007) 1–12.

[66] J. Bull, A. Jameson, Simulation of the Taylor-Green vortex using high-order flux reconstruction schemes, AIAA Journal
53 (9) (2015) 2750–2761.

[67] M. Dumbser, I. Peshkov, E. Romenski, O. Zanotti, High order ADER schemes for a unified first order hyperbolic formu-
lation of continuum mechanics: Viscous heat-conducting fluids and elastic solids, Journal of Computational Physics 314
(2016) 824–862.

[68] J.-B. Chapelier, M. de la Llave Plata, E. Lamballais, Development of a multiscale LES model in the context of a modal
discontinuous Galerkin method, Computer Methods in Applied Mechanics and Engineering 307 (2016) 275–299.

[69] A. Sifounakis, S. Lee, D. You, A conservative finite volume method for incompressible Navier-Stokes equations on locally
refined nested cartesian grids, Journal of Computational Physics 326 (2016) 845–861.

[70] C.-W. Shu, W.-S. Don, D. Gottlieb, O. Schilling, L. Jameson, Numerical convergence study of nearly incompressible,
inviscid Taylor-Green vortex flow, Journal of Scientific Computing 24 (1) (2005) 569–595.

[71] M. Brachet, D. Meiron, B. Nickel, R. Morf, U. Frisch, S. Orszag, Small-scale structure of the Taylor-Green vortex, Journal
of Fluid Mechanics 130 (1983) 411–452.

[72] D. Garmann, M. Visbal, P. Orkwis, Comparative study of implicit and subgrid-scale model large-eddy simulation tech-
niques for low-reynolds number airfoil applications, International Journal for Numerical Methods in Fluids 71 (12) (2013)
1546–1565.

[73] A. Beck, T. Bolemann, D. Flad, H. Frank, G. Gassner, F. Hindenlang, C.-D. Munz, High-order discontinuous galerkin
spectral element methods for transitional and turbulent flow simulations, International Journal for Numerical Methods in
Fluids 76 (8) (2014) 522–548.

35

http://dx.doi.org/doi.org/10.1016/j.compfluid.2018.03.012
http://dx.doi.org/doi.org/10.1016/j.compfluid.2018.03.012
http://dx.doi.org/10.1016/j.jcp.2013.09.045

	Introduction
	General Formulation
	High-order finite-volume k-exact least square reconstruction
	MUSCL
	WENO

	Low-Mach Number Treatment
	Fluxes approximation & Temporal discretisation

	Results 
	Subsonic flow past a 2D cylinder
	Supersonic flow past a 2D cylinder
	2D vortex evolution
	3D Taylor-Green vortex
	SD7003 Aerofoil 

	Conclusions 

