11,419 research outputs found
On Putting Knowledge 'First'
There is a New Idea in epistemology. It goes by the name of ‘knowledge first,’ and it is particularly associated with Timothy Williamson’s book Knowledge and Its Limits. In slogan form, to put knowledge first is to treat knowledge as basic or fundamental, and to explain other states—belief, justification, maybe even content itself—in terms of knowledge, instead of vice versa. The idea has proven enormously interesting, and equally controversial. But deep foundational questions about its actual content remain relatively unexplored. We think that a wide variety of views travel under the banner of ‘knowledge first’ (and that the slogan doesn’t help much with differentiating them). Furthermore, we think it is far from straightforward to draw connections between certain of these views; they are more independent than they are often assumed to be.
Our project here is exploratory and clarificatory. We mean to tease apart various ‘knowledge first’ claims, and explore what connections they do or do not have with one another. Our taxonomy is offered in §2, and connections are explored in §3. The result, we hope, will be a clearer understanding of just what the knowledge first theses are. We conclude, in §4, with some brief suggestions as to how we think the various theses might be evaluated
Giant planets around two intermediate-mass evolved stars and confirmation of the planetary nature of HIP67851 c
Precision radial velocities are required to discover and characterize planets
orbiting nearby stars. Optical and near infrared spectra that exhibit many
hundreds of absorption lines can allow the m/s precision levels required for
such work. However, this means that studies have generally focused on
solar-type dwarf stars. After the main-sequence, intermediate-mass stars
(former A-F stars) expand and rotate slower than their progenitors, thus
thousands of narrow absorption lines appear in the optical region, permitting
the search for planetary Doppler signals in the data for these types of stars.
We present the discovery of two giant planets around the intermediate-mass
evolved star HIP65891 and HIP107773. The best Keplerian fit to the HIP65891 and
HIP107773 radial velocities leads to the following orbital parameters: P=1084.5
d; msin = 6.0 M; =0.13 and P=144.3 d; msin = 2.0
M; =0.09, respectively. In addition, we confirm the planetary nature
of the outer object orbiting the giant star HIP67851. The orbital parameters of
HIP67851c are: P=2131.8 d, msin = 6.0 M and =0.17. With
masses of 2.5 M and 2.4 M HIP65891 and HIP107773 are two of the
most massive stars known to host planets. Additionally, HIP67851 is one of five
giant stars that are known to host a planetary system having a close-in planet
( 0.7 AU). Based on the evolutionary states of those five stars, we
conclude that close-in planets do exist in multiple systems around subgiants
and slightly evolved giants stars, but probably they are subsequently destroyed
by the stellar envelope during the ascent of the red giant branch phase. As a
consequence, planetary systems with close-in objects are not found around
horizontal branch stars.Comment: Accepted for publication in A&
Sand as Maxwell's demon
We consider a dilute gas of granular material inside a box, kept in a
stationary state by shaking. A wall separates the box into two identical
compartments, save for a small hole at some finite height . As the gas is
cooled, a second order phase transition occurs, in which the particles
preferentially occupy one side of the box. We develop a quantitative theory of
this clustering phenomenon and find good agreement with numerical simulations
Exotic magnetism in the alkali sesquoxides Rb4O6 and Cs4O6
Among the various alkali oxides the sesquioxides Rb4O6 and Cs4O6 are of
special interest. Electronic structure calculations using the local
spin-density approximation predicted that Rb4O6 should be a half-metallic
ferromagnet, which was later contradicted when an experimental investigation of
the temperature dependent magnetization of Rb4O6 showed a low-temperature
magnetic transition and differences between zero-field-cooled (ZFC) and
field-cooled (FC) measurements. Such behavior is known from spin glasses and
frustrated systems. Rb4O6 and Cs4O6 comprise two different types of dioxygen
anions, the hyperoxide and the peroxide anions. The nonmagnetic peroxide anions
do not contain unpaired electrons while the hyperoxide anions contain unpaired
electrons in antibonding pi*-orbitals. High electron localization (narrow
bands) suggests that electronic correlations are of major importance in these
open shell p-electron systems. Correlations and charge ordering due to the
mixed valency render p-electron-based anionogenic magnetic order possible in
the sesquioxides. In this work we present an experimental comparison of Rb4O6
and the related Cs4O6. The crystal structures are verified using powder x-ray
diffraction. The mixed valency of both compounds is confirmed using Raman
spectroscopy, and time-dependent magnetization experiments indicate that both
compounds show magnetic frustration, a feature only previously known from d-
and f-electron systems
Dynamics of inelastically colliding rough spheres: Relaxation of translational and rotational energy
We study the exchange of kinetic energy between translational and rotational
degrees of freedom for inelastic collisions of rough spheres. Even if
equipartition holds in the initial state it is immediately destroyed by
collisions. The simplest generalisation of the homogeneous cooling state allows
for two temperatures, characterizing translational and rotational degrees of
freedom separately. For times larger than a crossover frequency, which is
determined by the Enskog frequency and the initial temperature, both energies
decay algebraically like with a fixed ratio of amplitudes, different
from one.Comment: 5 pages, RevTeX, 2 eps figures, slightly expanded discussion, new
figures with dimensionless units, added references, accepted for publication
in PRE as a Rapid Com
We Could, but Should We? Ethical Considerations for Providing Access to GeoCities and Other Historical Digital Collections
We live in an era in which the ways that we can make sense of our past are evolving as more artifacts from that past become digital. At the same time, the responsibilities of traditional gatekeepers who have negotiated the ethics of historical data collection and use, such as librarians and archivists, are increasingly being sidelined by the system builders who decide whether and how to provide access to historical digital collections, often without sufficient reflection on the ethical issues at hand. It is our aim to better prepare system builders to grapple with these issues. This paper focuses discussions around one such digital collection from the dawn of the web, asking what sorts of analyses can and should be conducted on archival copies of the GeoCities web hosting platform that dates to 1994.This research was supported by the Natural Sciences and Engineering Research Council of Canada, the Social Sciences and Humanities Research Council of Canada, the US National Science Foundation (grants 1618695 and 1704369), the Andrew W. Mellon Foundation, Start Smart Labs, and Compute Canada
An eccentric companion at the edge of the brown dwarf desert orbiting the 2.4 Msun giant star HIP67537
We report the discovery of a substellar companion around the giant star
HIP67537. Based on precision radial velocity measurements from CHIRON and FEROS
high-resolution spectroscopic data, we derived the following orbital elements
for HIP67537: msin = 11.1 M,
= 4.9 AU and = 0.59. Considering
random inclination angles, this object has 65% probability to be
above the theoretical deuterium-burning limit, thus it is one of the few known
objects in the planet to brown-dwarf transition region. In addition, we
analyzed the Hipparcos astrometric data of this star, from which we derived a
minimum inclination angle for the companion of 2 deg. This value
corresponds to an upper mass limit of 0.3 M, therefore the
probability that HIP67537 is stellar in nature is 7%. The large
mass of the host star and the high orbital eccentricity makes HIP67537 a
very interesting and rare substellar object. This is the second candidate
companion in the brown dwarf desert detected in the sample of intermediate-mass
stars targeted by the EXPRESS radial velocity program, which corresponds to a
detection fraction of = 1.6%. This value is larger than the
fraction observed in solar-type stars, providing new observational evidence of
an enhanced formation efficiency of massive substellar companions in massive
disks. Finally, we speculate about different formation channels for this
object.Comment: Accepted for publication to A&
Inherent Rheology of a Granular Fluid in Uniform Shear Flow
In contrast to normal fluids, a granular fluid under shear supports a steady
state with uniform temperature and density since the collisional cooling can
compensate locally for viscous heating. It is shown that the hydrodynamic
description of this steady state is inherently non-Newtonian. As a consequence,
the Newtonian shear viscosity cannot be determined from experiments or
simulation of uniform shear flow. For a given degree of inelasticity, the
complete nonlinear dependence of the shear viscosity on the shear rate requires
the analysis of the unsteady hydrodynamic behavior. The relationship to the
Chapman-Enskog method to derive hydrodynamics is clarified using an approximate
Grad's solution of the Boltzmann kinetic equationComment: 10 pages, 4 figures; substantially enlarged version; to be published
in PR
Colloids in light fields: particle dynamics in random and periodic energy landscapes
The dynamics of colloidal particles in potential energy landscapes have
mainly been investigated theoretically. In contrast, here we discuss the
experimental realization of potential energy landscapes with the help of light
fields and the observation of the particle dynamics by video microscopy. The
experimentally observed dynamics in periodic and random potentials are compared
to simulation and theoretical results in terms of, e.g. the mean-squared
displacement, the time-dependent diffusion coefficient or the non-Gaussian
parameter. The dynamics are initially diffusive followed by intermediate
subdiffusive behaviour which again becomes diffusive at long times. How
pronounced and extended the different regimes are, depends on the specific
conditions, in particular the shape of the potential as well as its roughness
or amplitude but also the particle concentration. Here we focus on dilute
systems, but the dynamics of interacting systems in external potentials, and
thus the interplay between particle-particle and particle-potential
interactions, is also mentioned briefly. Furthermore, the observed dynamics of
dilute systems resemble the dynamics of concentrated systems close to their
glass transition, with which it is compared. The effect of certain potential
energy landscapes on the dynamics of individual particles appears similar to
the effect of interparticle interactions in the absence of an external
potential
- …