28,318 research outputs found
Sociological Knowledge and Transformation at âDiversity Universityâ, UK
This chapter is based on a case study of one UK university sociology department and shows how sociology knowledge can transform the lives of ânon-traditionalâ students. The research from which the case is drawn focused on four departments teaching sociology-related subjects in universities positioned differently in UK league tables. It explored the question of the relationship between university reputation, pedagogic quality and curriculum knowledge, challenging taken-for-granted judgements about âqualityâ and in conceptualising âjustâ university pedagogy by taking Basil Bernsteinâs ideas about how âpowerfulâ knowledge is distributed in society to illuminate pedagogy and curriculum. The project took the view that âpowerâ lies in the acquisition of specific (inter)disciplinary knowledges which allows the formation of disciplinary identities by way of developing the means to think about and act in the world in specific ways. We chose to focus on sociology because (1) university sociology is taken up by all socio-economic classes in the UK and is increasingly taught in courses in which the discipline is applied to practice; (2) it is a discipline that historically pursues social and moral ambition which assists exploration of the contribution of pedagogic quality to individuals and society beyond economic goals; (3) the researchers teach and research sociology or sociology of education - an understanding of the subjects under discussion is essential to make judgements about quality. âDiversityâ was one of four case study universities. It ranks low in university league tables; is located in a large, multi-cultural English inner city; and, its students are likely to come from lower socio-economic and/or ethnic minority groups, as well as being the first in their families to attend university. To make a case for transformative teaching at Diversity, the chapter draws on longitudinal interviews with students, interviews with tutors, curriculum documents, recordings of teaching, examples of student work, and a survey. It establishes what we can learn from the case of sociology at Diversity, arguing that equality, quality and transformation for individuals and society are served by a university curriculum which is research led and challenging combined with pedagogical practices which give access to difficult-to-acquire and powerful knowledge
Experimental creep data for a built-up aluminum/titanium structure subjected to heating and loading
Experimental creep, temperature, and strain data resulting from a laboratory experiment on a built-up aluminum/titanium structure are presented. The structure and the experiment are described in detail. A heating and loading experiment lasting approximately six hours is conducted on a test structure. Considerable creep strain resulted from compressive stresses in the heated skin. Large residual stresses were found after the experiment was completed. The residual stresses in the substructure frames were large enough to preclude further cycles of creep experiments with this built-up structure because of concern that the frame webs would buckle
Can we detect quantum gravity with compact binary inspirals?
Treating general relativity as an effective field theory, we compute the
leading-order quantum corrections to the orbits and gravitational-wave emission
of astrophysical compact binaries. These corrections are independent of the
(unknown) nature of quantum gravity at high energies, and generate a phase
shift and amplitude increase in the observed gravitational-wave signal.
Unfortunately (but unsurprisingly), these corrections are undetectably small,
even in the most optimistic observational scenarios.Comment: 7 pages, 0 figures; version 2 has additional discussion of our
approach and 5 additional reference
A Comparison of Semi-Analytic and Smoothed Particle Hydrodynamics Galaxy Formation
We compare the statistical properties of galaxies found in two different
models of hierarchical galaxy formation: the semi-analytic model of Cole et al.
and the smoothed particle hydrodynamics (SPH) simulations of Pearce et al.
Using a `stripped-down' version of the semi-analytic model which mimics the
resolution of the SPH simulations and excludes physical processes not included
in them, we find that the two models produce an ensemble of galaxies with
remarkably similar properties, although there are some differences in the gas
cooling rates and in the number of galaxies that populate halos of different
mass. The full semi-analytic model, which has effectively no resolution limit
and includes a treatment of star formation and supernovae feedback, produces
somewhat different (but readily understandable) results. Agreement is
particularly good for the present-day global fractions of hot gas, cold dense
(i.e. galactic) gas and uncollapsed gas, for which the SPH and stripped-down
semi-analytic calculations differ by at most 25%. In the most massive halos,
the stripped-down semi-analytic model predicts, on the whole, up to 50% less
gas in galaxies than is seen in the SPH simulations. The two techniques
apportion this cold gas somewhat differently amongst galaxies in a given halo.
This difference can be tracked down to the greater cooling rate in massive
halos in the SPH simulation compared to the semi-analytic model. (abridged)Comment: 19 pages, 13 figures, to appear in MNRAS. Significantly extended to
explore galaxy progenitor distributions and behaviour of models at high
redshift
Explicit representation and parametrised impacts of under ice shelf seas in the zâ coordinate ocean model NEMO 3.6
Ice-shelf-ocean interactions are a major source of freshwater on the Antarctic continental shelf and have a strong impact on ocean properties, ocean circulation and sea ice. However, climate models based on the ocean-sea ice model NEMO (Nucleus for European Modelling of the Ocean) currently do not include these interactions in any detail. The capability of explicitly simulating the circulation beneath ice shelves is introduced in the non-linear free surface model NEMO. Its implementation into the NEMO framework and its assessment in an idealised and realistic circum-Antarctic configuration is described in this study. Compared with the current prescription of ice shelf melting (i.e. at the surface), inclusion of open sub-ice-shelf cavities leads to a decrease in sea ice thickness along the coast, a weakening of the ocean stratification on the shelf, a decrease in salinity of high-salinity shelf water on the Ross and Weddell sea shelves and an increase in the strength of the gyres that circulate within the over-deepened basins on the West Antarctic continental shelf. Mimicking the overturning circulation under the ice shelves by introducing a prescribed meltwater flux over the depth range of the ice shelf base, rather than at the surface, is also assessed. It yields similar improvements in the simulated ocean properties and circulation over the Antarctic continental shelf to those from the explicit ice shelf cavity representation. With the ice shelf cavities opened, the widely used "three equation" ice shelf melting formulation, which enables an interactive computation of melting, is tested. Comparison with observational estimates of ice shelf melting indicates realistic results for most ice shelves. However, melting rates for the Amery, Getz and George VI ice shelves are considerably overestimated
Technology requirements for future Earth-to-geosynchronous orbit transportation systems. Volume 1: Executive summary
Technologies including accelerated technology that are critical to performance and/or provide cost advantages for future space transportation systems are identified. Mission models are scoped and include priority missions, and cargo missions. Summary data, providing primary design concepts and features, are given for the SSTO, HLLV, POTV, and LCOTV vehicles. Significant system costs and total system costs in terms of life cycle costs in both discounted and undiscounted dollars are summarized for each of the vehicles
Technology requirements for future Earth-to-geosynchronous orbit transportation systems. Volume 3: Appendices
Technological requirements and forecasts of rocket engine parameters and launch vehicles for future Earth to geosynchronous orbit transportation systems are presented. The parametric performance, weight, and envelope data for the LOX/CH4, fuel cooled, staged combustion cycle and the hydrogen cooled, expander bleed cycle engine concepts are discussed. The costing methodology and ground rules used to develop the engine study are summarized. The weight estimating methodology for winged launched vehicles is described and summary data, used to evaluate and compare weight data for dedicated and integrated O2/H2 subsystems for the SSTO, HLLV and POTV are presented. Detail weights, comparisons, and weight scaling equations are provided
1/N_c Expansion of the Heavy Baryon Isgur-Wise Functions
The 1/N_c expansion of the heavy baryon Isgur-Wise functions is discussed.
Because of the contracted SU(2N_f) light quark spin-flavor symmetry, the
universality relations among the Isgur-Wise functions of \Lambda_b to \Lambda_c
and \Sigma_b^{(*)} to \Sigma_c^{(*)} are valid up to the order of 1/N_c^2.Comment: 7 pages, latex, no figures, to appear in Phys. Rev.
- âŠ