4,863 research outputs found

    Vacancy diffusion in the triangular lattice dimer model

    Get PDF
    We study vacancy diffusion on the classical triangular lattice dimer model, sub ject to the kinetic constraint that dimers can only translate, but not rotate. A single vacancy, i.e. a monomer, in an otherwise fully packed lattice, is always localized in a tree-like structure. The distribution of tree sizes is asymptotically exponential and has an average of 8.16 \pm 0.01 sites. A connected pair of monomers has a finite probability of being delocalized. When delocalized, the diffusion of monomers is anomalous:Comment: 15 pages, 27 eps figures. submitted to Physical Review

    PROMOTION OF REPLICATION IN LYMPHOID CELLS BY SPECIFIC THIOLS AND DISULFIDES IN VITRO : EFFECTS ON MOUSE LYMPHOMA CELLS IN COMPARISON WITH SPLENIC LYMPHOCYTES

    Get PDF
    Numerous lines of mouse lymphoid tumors (13 of 22 tested) showed, with increased sensitivity, a property of normal mouse splenic lymphocytes, the potential for growth promotion in vitro by specific thiols added to standard culture media. For lymphoma L1210 (V), structure activity relationships were examined; 9 of 30 thiols promoted growth; the most active was α-thioglycerol, effective at 0.2 µM. Thiols became oxidized under conditions of tissue culture and had half-lives of less than 8 h. Disulfides of active thiols promoted growth of lymphoma cells. The mitogenic response of splenic lymphocytes to lectins was increased by thiols-disulfides which promoted the growth of lymphoma cells, but the response varied with the mitogen preparation used and under some conditions thiols-disulfides were inhibitory

    Vacancy localization in the square dimer model

    Get PDF
    We study the classical dimer model on a square lattice with a single vacancy by developing a graph-theoretic classification of the set of all configurations which extends the spanning tree formulation of close-packed dimers. With this formalism, we can address the question of the possible motion of the vacancy induced by dimer slidings. We find a probability 57/4-10Sqrt[2] for the vacancy to be strictly jammed in an infinite system. More generally, the size distribution of the domain accessible to the vacancy is characterized by a power law decay with exponent 9/8. On a finite system, the probability that a vacancy in the bulk can reach the boundary falls off as a power law of the system size with exponent 1/4. The resultant weak localization of vacancies still allows for unbounded diffusion, characterized by a diffusion exponent that we relate to that of diffusion on spanning trees. We also implement numerical simulations of the model with both free and periodic boundary conditions.Comment: 35 pages, 24 figures. Improved version with one added figure (figure 9), a shift s->s+1 in the definition of the tree size, and minor correction

    Metal-insulator transition from combined disorder and interaction effects in Hubbard-like electronic lattice models with random hopping

    Full text link
    We uncover a disorder-driven instability in the diffusive Fermi liquid phase of a class of many-fermion systems, indicative of a metal-insulator transition of first order type, which arises solely from the competition between quenched disorder and interparticle interactions. Our result is expected to be relevant for sufficiently strong disorder in d = 3 spatial dimensions. Specifically, we study a class of half-filled, Hubbard-like models for spinless fermions with (complex) random hopping and short-ranged interactions on bipartite lattices, in d > 1. In a given realization, the hopping disorder breaks time reversal invariance, but preserves the special ``nesting'' symmetry responsible for the charge density wave instability of the ballistic Fermi liquid. This disorder may arise, e.g., from the application of a random magnetic field to the otherwise clean model. We derive a low energy effective field theory description for this class of disordered, interacting fermion systems, which takes the form of a Finkel'stein non-linear sigma model [A. M. Finkel'stein, Zh. Eksp. Teor. Fiz. 84, 168 (1983), Sov. Phys. JETP 57, 97 (1983)]. We analyze the Finkel'stein sigma model using a perturbative, one-loop renormalization group analysis controlled via an epsilon-expansion in d = 2 + epsilon dimensions. We find that, in d = 2 dimensions, the interactions destabilize the conducting phase known to exist in the disordered, non-interacting system. The metal-insulator transition that we identify in d > 2 dimensions occurs for disorder strengths of order epsilon, and is therefore perturbatively accessible for epsilon << 1. We emphasize that the disordered system has no localized phase in the absence of interactions, so that a localized phase, and the transition into it, can only appear due to the presence of the interactions.Comment: 47 pages, 25 figures; submitted to Phys. Rev. B. Long version of arXiv:cond-mat/060757

    Selective interlayer ferromagnetic coupling between the Cu spins in YBa2_2 Cu3_3 O7x_{7-x} grown on top of La0.7_{0.7} Ca0.3_{0.3} MnO3_3

    Full text link
    Studies to date on ferromagnet/d-wave superconductor heterostructures focus mainly on the effects at or near the interfaces while the response of bulk properties to heterostructuring is overlooked. Here we use resonant soft x-ray scattering spectroscopy to reveal a novel c-axis ferromagnetic coupling between the in-plane Cu spins in YBa2_2 Cu3_3 O7x_{7-x} (YBCO) superconductor when it is grown on top of ferromagnetic La0.7_{0.7} Ca0.3_{0.3} MnO3_3 (LCMO) manganite layer. This coupling, present in both normal and superconducting states of YBCO, is sensitive to the interfacial termination such that it is only observed in bilayers with MnO_2but not with La0.7_{0.7} Ca0.3_{0.3} interfacial termination. Such contrasting behaviors, we propose, are due to distinct energetic of CuO chain and CuO2_2 plane at the La0.7_{0.7} Ca0.3_{0.3} and MnO2_2 terminated interfaces respectively, therefore influencing the transfer of spin-polarized electrons from manganite to cuprate differently. Our findings suggest that the superconducting/ferromagnetic bilayers with proper interfacial engineering can be good candidates for searching the theorized Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) state in cuprates and studying the competing quantum orders in highly correlated electron systems.Comment: Please note the change of the title. Text might be slightly different from the published versio

    Spiral model, jamming percolation and glass-jamming transitions

    Full text link
    The Spiral Model (SM) corresponds to a new class of kinetically constrained models introduced in joint works with D.S. Fisher [8,9]. They provide the first example of finite dimensional models with an ideal glass-jamming transition. This is due to an underlying jamming percolation transition which has unconventional features: it is discontinuous (i.e. the percolating cluster is compact at the transition) and the typical size of the clusters diverges faster than any power law, leading to a Vogel-Fulcher-like divergence of the relaxation time. Here we present a detailed physical analysis of SM, see [5] for rigorous proofs. We also show that our arguments for SM does not need any modification contrary to recent claims of Jeng and Schwarz [10].Comment: 9 pages, 7 figures, proceedings for StatPhys2

    Charge ordering in the spinels AlV2_2O4_4 and LiV2_2O4_4

    Full text link
    We develop a microscopic theory for the charge ordering (CO) transitions in the spinels AlV2_2O4_4 and LiV2_2O4_4 (under pressure). The high degeneracy of CO states is lifted by a coupling to the rhombohedral lattice deformations which favors transition to a CO state with inequivalent V(1) and V(2) sites forming Kagom\'e and trigonal planes respectively. We construct an extended Hubbard type model including a deformation potential which is treated in unrestricted Hartree Fock approximation and describes correctly the observed first-order CO transition. We also discuss the influence of associated orbital order. Furthermore we suggest that due to different band fillings AlV2_2O4_4 should remain metallic while LiV2_2O4_4 under pressure should become a semiconductor when charge disproportionation sets in

    Disorder-induced Majorana metal in interacting non-Abelian anyon systems

    Full text link
    We demonstrate that a thermal metal of Majorana fermions forms in a two-dimensional system of interacting non-Abelian (Ising) anyons in the presence of moderate disorder. This bulk metallic phase arises in the ν=5/2\nu=5/2 quantum Hall state when disorder pins the anyonic quasiparticles. More generally, it naturally occurs for various proposed systems supporting Majorana fermion zero modes when disorder induces the random pinning of a finite density of vortices. This includes all two-dimensional topological superconductors in so-called symmetry class D. A distinct experimental signature of the thermal metal phase is the presence of bulk heat transport down to zero temperature.Comment: 4 pages, 6 figure
    corecore