406 research outputs found

    Motor neuron-derived Thsd7a is essential for zebrafish vascular development via the Notch-dll4 signaling pathway.

    Get PDF
    BackgroundDevelopment of neural and vascular systems displays astonishing similarities among vertebrates. This parallelism is under a precise control of complex guidance signals and neurovascular interactions. Previously, our group identified a highly conserved neural protein called thrombospondin type I domain containing 7A (THSD7A). Soluble THSD7A promoted and guided endothelial cell migration, tube formation and sprouting. In addition, we showed that thsd7a could be detected in the nervous system and was required for intersegmental vessels (ISV) patterning during zebrafish development. However, the exact origin of THSD7A and its effect on neurovascular interaction remains unclear.ResultsIn this study, we discovered that zebrafish thsd7a was expressed in the primary motor neurons. Knockdown of Thsd7a disrupted normal primary motor neuron formation and ISV sprouting in the Tg(kdr:EGFP/mnx1:TagRFP) double transgenic zebrafish. Interestingly, we found that Thsd7a morphants displayed distinct phenotypes that are very similar to the loss of Notch-delta like 4 (dll4) signaling. Transcript profiling further revealed that expression levels of notch1b and its downstream targets, vegfr2/3 and nrarpb, were down-regulated in the Thsd7a morphants. These data supported that zebrafish Thsd7a could regulate angiogenic sprouting via Notch-dll4 signaling during development.ConclusionsOur results suggested that motor neuron-derived Thsd7a plays a significant role in neurovascular interactions. Thsd7a could regulate ISV angiogenesis via Notch-dll4 signaling. Thus, Thsd7a is a potent angioneurin involved in the development of both neural and vascular systems

    Effects of High-tech Corporate Characteristics on Social Capital and Role of Human Resource Management

    Get PDF
    Human resource is the major source of competitive advantages for an enterprise. Discussions aiming at the role of human resource in educational communities are progressing in past years. From the mobility of human resource in an organization, retaining human assets or reducing the mobility to the lowest are considered as the professional commitment of human resource and the direction for efforts. A new viewpoint about the role of human resource reveals that the role of human resource is to change social capital into the driving force of competitive advantages of an organization. It might affect the presentation of different roles of human resource in various corporate characteristics. For this reason, the effects of high-tech corporate characteristics on social capital and role of human resource management are discussed in this study. Aiming at Kunshan High-tech Industrial Development Zone, the management and the employees in the manufacturers are distributed 1000 copies of questionnaires, and 683 valid copies are retrieved, with the retrieval rate 68%. The research results show 1. significantly positive effects of social capital on the role of human resource, 2. remarkably positive effects of corporate characteristics on social capital, and 3. notably positive effects of corporate characteristics on the role of human resource. It is expected to verify richer and more diverse effects for the reference of successive research and practice communities

    A panel of tumor markers, calreticulin, annexin A2, and annexin A3 in upper tract urothelial carcinoma identified by proteomic and immunological analysis

    Get PDF
    BACKGROUND: Upper tract urothelial carcinoma (UTUC) is a tumor with sizable metastases and local recurrence. It has a worse prognosis than bladder cancer. This study was designed to investigate the urinary potential tumor markers of UTUC. METHODS: Between January 2008 and January 2009, urine was sampled from 13 patients with UTUC and 20 healthy adults. The current study identified biomarkers for UTUC using non-fixed volume stepwise weak anion exchange chromatography for fractionation of urine protein prior to two-dimensional gel electrophoresis. RESULTS: Fifty five differential proteins have been determined by comparing with the 2-DE maps of the urine of UTUC patients and those of healthy people. Western blotting analysis and immunohistochemistry of tumor tissues and normal tissues from patients with UTUC were carried out to further verify five possible UTUC biomarkers, including zinc-alpha-2-glycoprotein, calreticulin, annexin A2, annexin A3 and haptoglobin. The data of western blot and immunohistochemical analysis are consistent with the 2-DE data. Combined the experimental data in the urine and in tumor tissues collected from patients with UTUC, the crucial over-expressed proteins are calreticulin, annexin A2, and annexin A3. CONCLUSIONS: Calreticulin, annexin A2, and annexin A3 are very likely a panel of biomarkers with potential value for UTUC diagnosis

    Concurrent image-guided intensity modulated radiotherapy and chemotherapy following neoadjuvant chemotherapy for locally advanced nasopharyngeal carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To evaluate the experience of induction chemotherapy followed by concurrent chemoradiationwith helical tomotherapy (HT) for nasopharyngeal carcinoma (NPC).</p> <p>Methods</p> <p>Between August 2006 and December 2009, 28 patients with pathological proven nonmetastatic NPC were enrolled. All patients were staged as IIB-IVB. Patients were first treated with 2 to 3 cycles of induction chemotherapy with EP-HDFL (Epirubicin, Cisplatin, 5-FU, and Leucovorin). After induction chemotherapy, weekly based PFL was administered concurrent with HT. Radiation consisted of 70 Gy to the planning target volumes of the primary tumor plus any positive nodal disease using 2 Gy per fraction.</p> <p>Results</p> <p>After completion of induction chemotherapy, the response rates for primary and nodal disease were 96.4% and 80.8%, respectively. With a median follow-up after 33 months (Range, 13-53 months), there have been 2 primary and 1 nodal relapse after completion of radiotherapy. The estimated 3-year progression-free rates for local, regional, locoregional and distant metastasis survival rate were 92.4%, 95.7%, 88.4%, and 78.0%, respectively. The estimated 3-year overall survival was 83.5%. Acute grade 3, 4 toxicities for xerostomia and dermatitis were only 3.6% and 10.7%, respectively.</p> <p>Conclusion</p> <p>HT for locoregionally advanced NPC is feasible and effective in regard to locoregional control with high compliance, even after neoadjuvant chemotherapy. None of out-field or marginal failure noted in the current study confirms the potential benefits of treating NPC patients by image-guided radiation modality. A long-term follow-up study is needed to confirm these preliminary findings.</p

    Development of high-producing CHO cell lines through target-designed strategy

    Get PDF
    Productivity and stability are critical for the protein drug producing cell lines for manufacturing. Given that the integration sites of gene of interest (GOI) could contribute remarkable effect on the productivity and stability of GOI expression, we intended to develop a targeting-designed approach to generate the high-producing cell lines in a time-saving and less labor-intensive method through targeting the active and stable regions. To identify the active and stable regions located in CHO genome, two approaches were applied in our experiments. Firstly, the integration sites of GOI in cell clones developed by random integration were identified by whole genome sequencing. Secondly, we developed transposon-mediated low copy integration to discover novel active region located in CHO genome. It is interesting that the productivity per integrated GOI in cell clones developed by transposon system was more than two times to that in cell clones developed by random integration (random integration: 20-40 mg/L/copy; transposon-mediated integration: 40-140mg/L/copy). In addition, about 80% of cell clones developed by transposon system maintained the stability of antibody titer after culturing for 60 generations. These results implied that the potential active and stable integration region in the cell clones developed by transposon system. The identified integration regions could be applied for target integration. In order to verify the expression activity and stability of the integration sites, we employed CRISPR/Cas9 to specifically integrate the antibody gene into CHO genome for expression. Our data showed the cell pool generated by knock-in of expression vector into the IS1 integration site present higher expression titer than cell pools generated by integration into other sites or random integration. We further cultured the single cell clones derived from this cell pool by Clonepix and limiting dilution. These single cell clones have high expression titer ranging from 254 to 804 mg/L in batch culture of after 6 Days. A single cell clone(376 mg/L in batch culture) can reached 2 g/L in fed-batch culture. The stability analysis showed this clone maintain stable expression of GOI after 60 generation. Here, we demonstrated the generation of stable cell line with high protein expression by CRISPR/Cas9 mediated target integration. This approach will cost less time and labor than traditional method

    Cloud Computing-Based TagSNP Selection Algorithm for Human Genome Data

    Get PDF
    Single nucleotide polymorphisms (SNPs) play a fundamental role in human genetic variation and are used in medical diagnostics, phylogeny construction, and drug design. They provide the highest-resolution genetic fingerprint for identifying disease associations and human features. Haplotypes are regions of linked genetic variants that are closely spaced on the genome and tend to be inherited together. Genetics research has revealed SNPs within certain haplotype blocks that introduce few distinct common haplotypes into most of the population. Haplotype block structures are used in association-based methods to map disease genes. In this paper, we propose an efficient algorithm for identifying haplotype blocks in the genome. In chromosomal haplotype data retrieved from the HapMap project website, the proposed algorithm identified longer haplotype blocks than an existing algorithm. To enhance its performance, we extended the proposed algorithm into a parallel algorithm that copies data in parallel via the Hadoop MapReduce framework. The proposed MapReduce-paralleled combinatorial algorithm performed well on real-world data obtained from the HapMap dataset; the improvement in computational efficiency was proportional to the number of processors used

    FASTSNP: an always up-to-date and extendable service for SNP function analysis and prioritization

    Get PDF
    Single nucleotide polymorphism (SNP) prioritization based on the phenotypic risk is essential for association studies. Assessment of the risk requires access to a variety of heterogeneous biological databases and analytical tools. FASTSNP (function analysis and selection tool for single nucleotide polymorphisms) is a web server that allows users to efficiently identify and prioritize high-risk SNPs according to their phenotypic risks and putative functional effects. A unique feature of FASTSNP is that the functional effect information used for SNP prioritization is always up-to-date, because FASTSNP extracts the information from 11 external web servers at query time using a team of web wrapper agents. Moreover, FASTSNP is extendable by simply deploying more Web wrapper agents. To validate the results of our prioritization, we analyzed 1569 SNPs from the SNP500Cancer database. The results show that SNPs with a high predicted risk exhibit low allele frequencies for the minor alleles, consistent with a well-known finding that a strong selective pressure exists for functional polymorphisms. We have been using FASTSNP for 2 years and FASTSNP enables us to discover a novel promoter polymorphism. FASTSNP is available at

    Medial reward and lateral non-reward orbitofrontal cortex circuits change in opposite directions in depression

    Get PDF
    The first brain-wide voxel-level resting state functional-connectivity neuroimaging analysis of depression is reported, with 421 patients with major depressive disorder and 488 controls. Resting state functional connectivity between different voxels reflects correlations of activity between those voxels and is a fundamental tool in helping to understand the brain regions with altered connectivity and function in depression. One major circuit with altered functional connectivity involved the medial orbitofrontal cortex BA 13, which is implicated in reward, and which had reduced functional connectivity in depression with memory systems in the parahippocampal gyrus and medial temporal lobe, especially involving the perirhinal cortex BA 36 and entorhinal cortex BA 28. The Hamilton Depression Rating Scale scores were correlated with weakened functional connectivity of the medial orbitofrontal cortex BA 13. Thus in depression there is decreased reward-related and memory system functional connectivity, and this is related to the depressed symptoms. The lateral orbitofrontal cortex BA 47/12, involved in non-reward and punishing events, did not have this reduced functional connectivity with memory systems. Second, the lateral orbitofrontal cortex BA 47/12 had increased functional connectivity with the precuneus, the angular gyrus, and the temporal visual cortex BA 21. This enhanced functional connectivity of the non-reward/punishment system (BA 47/12) with the precuneus (involved in the sense of self and agency), and the angular gyrus (involved in language) is thus related to the explicit affectively negative sense of the self, and of self-esteem, in depression. A comparison of the functional connectivity in 185 depressed patients not receiving medication and 182 patients receiving medication showed that the functional connectivity of the lateral orbitofrontal cortex BA 47/12 with these three brain areas was lower in the medicated than the unmedicated patients. This is consistent with the hypothesis that the increased functional connectivity of the lateral orbitofrontal cortex BA 47/12 is related to depression. Relating the changes in cortical connectivity to our understanding of the functions of different parts of the orbitofrontal cortex in emotion helps to provide new insight into the brain changes related to depression, which are considered in the Discussion

    Increased functional connectivity of the posterior cingulate cortex with the lateral orbitofrontal cortex in depression

    Get PDF
    To analyze the functioning of the posterior cingulate cortex (PCC) in depression, we performed the first fully voxel-level resting state functional-connectivity neuroimaging analysis of depression of the PCC, with 336 patients with major depressive disorder and 350 controls. Voxels in the PCC had significantly increased functional connectivity with the lateral orbitofrontal cortex, a region implicated in non-reward and which is thereby implicated in depression. In patients receiving medication, the functional connectivity between the lateral orbitofrontal cortex and PCC was decreased back towards that in the controls. In the 350 controls, it was shown that the PCC has high functional connectivity with the parahippocampal regions which are involved in memory. The findings support the theory that the non-reward system in the lateral orbitofrontal cortex has increased effects on memory systems, which contribute to the rumination about sad memories and events in depression. These new findings provide evidence that a key target to ameliorate depression is the lateral orbitofrontal cortex

    Extract of Antrodia camphorata

    Get PDF
    In this study, the neuroprotective effect of an extract of Antrodia camphorata (A. camphorata), a fungus commonly used in Chinese folk medicine for treatment of viral hepatitis and cancer, alone or in combination with aspirin was investigated in a rat embolic stroke model. An ischemic stroke was induced in rats by a selective occlusion of the middle cerebral artery (MCA) with whole blood clots and then orally treated with A. camphorata (0.25 and 0.75 g/kg/day) alone and combined with aspirin (5 mg/kg/day). Sixty days later, the brains were removed, sectioned, and stained with triphenyltetrazolium chloride and analysed by a commercial image processing software program. Brain infarct volume, neurobehavioral score, cerebral blood perfusion, and subarachnoid and intracerebral hemorrhage incidence were perceived. In addition, potential bleeding side effect of the combinative therapy was assessed by measuring hemoglobin (Hb) content during intracerebral hemorrhage and gastric bleeding, prothrombin time (PT), and occlusion time (OT) after oral administration. Posttreatment with high dose A. camphorata significantly reduced infarct volume and improved neurobehavioral score (P < 0.05). Since A. camphorata alone or with aspirin did not alter the Hb level, this treatment is safe and does not cause hemorrhagic incident. Remarkably, the combination of A. camphorata and aspirin did not show a significant effect on the bleeding time, PT and OT increase suggesting that A. camphorata may have the neuroprotective effect without the prolongation of bleeding time or coagulation time. From these observations, we suggest that combinative therapy of A. camphorata and aspirin might offer enhanced neuroprotective efficacies without increasing side effects
    • …
    corecore