5,074 research outputs found

    Deformations of extended objects with edges

    Full text link
    We present a manifestly gauge covariant description of fluctuations of a relativistic extended object described by the Dirac-Nambu-Goto action with Dirac-Nambu-Goto loaded edges about a given classical solution. Whereas physical fluctuations of the bulk lie normal to its worldsheet, those on the edge possess an additional component directed into the bulk. These fluctuations couple in a non-trivial way involving the underlying geometrical structures associated with the worldsheet of the object and of its edge. We illustrate the formalism using as an example a string with massive point particles attached to its ends.Comment: 17 pages, revtex, to appear in Phys. Rev. D5

    Good Governance: A Step towards Promoting Positive Attitude and Enhancing Productivity in the Civil Service

    Get PDF
    This is a research about good governance in the civil service. Five federal organizations served as research population: Ministry for Capacity Building, Ministry of Revenue, Federal Civil Service Agency, Ethiopian Civil Service College, and Ethiopian Management Institute. Fifty-six (56) respondents served as research sample. The research was conducted through the use of a research instrument (opinionnaire). Percentage (%) and Chi square (X2) were used as statistical tools. It was found out that reform program pays equal attention to all citizens; financial regulations are violated in Government expenditure; service delivery is poor in the Civil Service; unethical practices do exist in Civil Service; top management system is poor; and Civil Service (HR) is ineffective. Based on the research findings it was recommended that Civil servants need a lot more of education, training and development. African Research Review Vol. 2 (1) 2008: pp. 19-4

    Open strings with topologically inspired boundary conditions

    Full text link
    We consider an open string described by an action of the Dirac-Nambu-Goto type with topological corrections which affect the boundary conditions but not the equations of motion. The most general addition of this kind is a sum of the Gauss-Bonnet action and the first Chern number (when the background spacetime dimension is four) of the normal bundle to the string worldsheet. We examine the modification introduced by such terms in the boundary conditions at the ends of the string.Comment: 12 pages, late

    Synthesis, Characterization, and Evaluation of the Antibacterial Activity of Allophylus serratus

    Get PDF
    Allophylus serratus mediated silver nanoparticles biosynthesis, characterization, and antimicrobial activity were described. The synthesis of silver nanoparticles was confirmed by visual observation: UV-Vis spectrum, X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), and Fourier Transform Infra-Red (FTIR). UV-Vis spectroscopy studies showed that the absorption spectra of synthesized silver nanoparticles from leaf and callus extracts had absorbance peak range of 440 nm and 445 nm, respectively. The X-RD pattern revealed the presence of crystalline, dominantly spherical silver nanoparticles in the sample having size ranging from 42 to 50 nm. The XRD peaks 38.2°, 44.1°, 64.1°, and 77.0° for leaf extract and 38.1°, 44.3°, 64.5°, 77.5°, and 81.33° for callus extract can be assigned the plane of silver crystals (111), (200), (220), and (311), respectively, and indicate that the silver nanoparticles are face-centered, cubic, and crystalline in nature. SEM and EDS analysis also confirmed the presence of silver nanoparticles. The FTIR results showed the presence of some biomolecules in extracts that act as reducing and capping agent for silver nanoparticles biosynthesis. The synthesized silver nanoparticles showed significant antibacterial activity against Klebsiella pneumoniae and Pseudomonas aeruginosa

    Mathematical assessment of the role of vector insecticide resistance and feeding/resting behavior on malaria transmission dynamics: Optimal control analysis

    Get PDF
    This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.The large-scale use of insecticide-treated bednets (ITNs) and indoor residual spraying (IRS), over the last two decades, has resulted in a dramatic reduction of malaria incidence globally. However, the effectiveness of these interventions is now being threatened by numerous factors, such as resistance to insecticide in the mosquito vector and their preference to feed and rest outdoors or early in the evening (when humans are not protected by the bednets). This study presents a new deterministic model for assessing the population-level impact of mosquito insecticide resistance on malaria transmission dynamics. A notable feature of the model is that it stratifies the mosquito population in terms of type (wild or resistant to insecticides) and feeding preference (indoor or outdoor). The model is rigorously analysed to gain insight into the existence and asymptotic stability properties of the various disease-free equilibria of the model namely the trivial disease-free equilibrium, the non-trivial resistant-only boundary disease-free equilibrium and a non-trivial disease-free equlibrium where both the wild and resistant mosquito geneotypes co-exist). Simulations of the model, using data relevant to malaria transmission dynamics in Ethiopia (a malaria-endemic nation), show that the use of optimal ITNs alone, or in combination with optimal IRS, is more effective than the singular implementation of an optimal IRS-only strategy. Further, when the effect of the fitness cost of insecticide resistance with respect to fecundity (i.e., assuming a decrease in the baseline birth rate of new resistant-type adult female mosquitoes) is accounted for, numerical simulations of the model show that the combined optimal ITNs-IRS strategy could lead to the effective control of the disease, and insecticide resistance effectively managed during the first 8 years of the 15-year implementation period of the insecticides-based anti-malaria control measures in the community.National Institute for Mathematical and Biological SynthesisNSF Award # EF-0832858The University of Tennessee, Knoxvill

    Contact lines for fluid surface adhesion

    Full text link
    When a fluid surface adheres to a substrate, the location of the contact line adjusts in order to minimize the overall energy. This adhesion balance implies boundary conditions which depend on the characteristic surface deformation energies. We develop a general geometrical framework within which these conditions can be systematically derived. We treat both adhesion to a rigid substrate as well as adhesion between two fluid surfaces, and illustrate our general results for several important Hamiltonians involving both curvature and curvature gradients. Some of these have previously been studied using very different techniques, others are to our knowledge new. What becomes clear in our approach is that, except for capillary phenomena, these boundary conditions are not the manifestation of a local force balance, even if the concept of surface stress is properly generalized. Hamiltonians containing higher order surface derivatives are not just sensitive to boundary translations but also notice changes in slope or even curvature. Both the necessity and the functional form of the corresponding additional contributions follow readily from our treatment.Comment: 8 pages, 2 figures, LaTeX, RevTeX styl

    Geometry of Deformations of Relativistic Membranes

    Full text link
    A kinematical description of infinitesimal deformations of the worldsheet spanned in spacetime by a relativistic membrane is presented. This provides a framework for obtaining both the classical equations of motion and the equations describing infinitesimal deformations about solutions of these equations when the action describing the dynamics of this membrane is constructed using {\it any} local geometrical worldsheet scalars. As examples, we consider a Nambu membrane, and an action quadratic in the extrinsic curvature of the worldsheet.Comment: 20 pages, Plain Tex, sign errors corrected, many new references added. To appear in Physical Review

    Spinor representation of surfaces and complex stresses on membranes and interfaces

    Full text link
    Variational principles are developed within the framework of a spinor representation of the surface geometry to examine the equilibrium properties of a membrane or interface. This is a far-reaching generalization of the Weierstrass-Enneper representation for minimal surfaces, introduced by mathematicians in the nineties, permitting the relaxation of the vanishing mean curvature constraint. In this representation the surface geometry is described by a spinor field, satisfying a two-dimensional Dirac equation, coupled through a potential associated with the mean curvature. As an application, the mesoscopic model for a fluid membrane as a surface described by the Canham-Helfrich energy quadratic in the mean curvature is examined. An explicit construction is provided of the conserved complex-valued stress tensor characterizing this surface.Comment: 17 page

    The Constraints in Spherically Symmetric General Relativity II --- Identifying the Configuration Space: A Moment of Time Symmetry

    Get PDF
    We continue our investigation of the configuration space of general relativity begun in I (gr-qc/9411009). Here we examine the Hamiltonian constraint when the spatial geometry is momentarily static (MS). We show that MS configurations satisfy both the positive quasi-local mass (QLM) theorem and its converse. We derive an analytical expression for the spatial metric in the neighborhood of a generic singularity. The corresponding curvature singularity shows up in the traceless component of the Ricci tensor. We show that if the energy density of matter is monotonically decreasing, the geometry cannot be singular. A supermetric on the configuration space which distinguishes between singular geometries and non-singular ones is constructed explicitly. Global necessary and sufficient criteria for the formation of trapped surfaces and singularities are framed in terms of inequalities which relate appropriate measures of the material energy content on a given support to a measure of its volume. The strength of these inequalities is gauged by exploiting the exactly solvable piece-wise constant density star as a template.Comment: 50 pages, Plain Tex, 1 figure available from the authors
    • …
    corecore