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The large-scale use of insecticide-treated bednets (ITNs) and indoor residual spraying
(IRS), over the last two decades, has resulted in a dramatic reduction of malaria incidence
globally. However, the effectiveness of these interventions is now being threatened by
numerous factors, such as resistance to insecticide in the mosquito vector and their
preference to feed and rest outdoors or early in the evening (when humans are not pro-
tected by the bednets). This study presents a new deterministic model for assessing the
population-level impact of mosquito insecticide resistance on malaria transmission dy-
namics. A notable feature of the model is that it stratifies the mosquito population in terms
of type (wild or resistant to insecticides) and feeding preference (indoor or outdoor). The
model is rigorously analysed to gain insight into the existence and asymptotic stability
properties of the various disease-free equilibria of the model namely the trivial disease-
free equilibrium, the non-trivial resistant-only boundary disease-free equilibrium and a
non-trivial disease-free equlibrium where both the wild and resistant mosquito geneo-
types co-exist). Simulations of the model, using data relevant to malaria transmission
dynamics in Ethiopia (a malaria-endemic nation), show that the use of optimal ITNs alone,
or in combination with optimal IRS, is more effective than the singular implementation of
an optimal IRS-only strategy. Further, when the effect of the fitness cost of insecticide
resistance with respect to fecundity (i.e., assuming a decrease in the baseline birth rate of
new resistant-type adult female mosquitoes) is accounted for, numerical simulations of the
model show that the combined optimal ITNs-IRS strategy could lead to the effective
control of the disease, and insecticide resistance effectively managed during the first 8
years of the 15-year implementation period of the insecticides-based anti-malaria control
measures in the community.
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1. Introduction

Malaria, caused by Plasmodium parasites, is a major life-threatening disease (WHO, 2016). The parasites are transmitted to
humans through the bites of infected adult female Anopheles mosquitoes. In the year 2015, for example, 91 countries and
regions in sub-Saharan Africa, South-East Asia, Latin America and the Middle East had ongoing malaria transmission and
nearly half of the world's population was at risk of malaria (WHO, 2016). The people at highest risk of malaria infection
include infants, children under 5 years of age, pregnant women and people living with HIV/AIDS (owing to their weak or not
fully-developed immune system) (Mohammed-Awel & Numfor, 2017; WHO, 2016). Over two-thirds (70%) of all malaria
deaths occur in children under age of five (WHO). According to the 2016 report of the World Health Organization (WHO),
there were 212 million cases of malaria in 2015 and 429,000 deaths. In places where the mosquito lifespan is longer (such as
some places in Africa (WHO, 2016)), transmission is higher. This is because the parasite has time to complete its development
cycle (sporogonic) inside the mosquito (WHO). The lifespan of the African Anopheles mosquito species is long, and it has
strong human-biting habit (due to these and other reasons, approximately 90% of the cases, and 92% of the deaths, occurred in
the African region in 2015 (WHO, 2016)). Malaria transmission also depends on climatic conditions, such as rainfall patterns,
temperature and humidity (Okuneye & Gumel, 2017; WHO, 2016; WHO) (these conditions are known to significantly affect
the survival and population size (abundance) of mosquitoes).

Numerous control strategies, such as the use of insecticide-treated mosquito bednets (ITNs) or long-lasting insecticidal
nets (LLINs) and indoor residual spraying (IRS) with chemical insecticides, antimalarial drugs (such as Artemisinin-based
combination therapies (ACTs) (WHO, 2016)), and intermittent preventive treatment of pregnant women and infants, are
being used to reduce (or prevent) malaria transmission in endemic areas. Furthermore, several candidate anti-malaria vac-
cines are being developed (Asale et al., 2014; Churcher, Lissenden, Griffin, Worrall, & Ranson, 2016; Mohammed-Awel, Zhao,
Numfor, & Lenhart, 2017; Mohammed-Awel & Numfor, 2017; Ngonghala, Del Valle, Zhao, & Mohammed-Awel, 2014;
Ngonghala, Mohammed, Zhao, & Prosper, 2016; Okumu & Moore, 2011; WHO, 2016). Owing to these efforts (i.e., imple-
mentation of ITNs and/or IRS strategies), malaria incidence and malaria mortality have been significantly reduced during the
period 2010e2015 (WHO, 2016). It is now generally believed that ITNs and IRS are the most effective control strategies for
reducing (or preventing) malaria transmission in endemic settings (Birget & Koella, 2015; Brown, Dickinson, & Kramer, 2013;
Chitnis, Hyman, & Cushing, 2008; Choi et al., 2014; Churcher et al., 2016; Corbel et al., 2010; Griffin et al., 2010; Jones et al.,
2013; Ngonghala et al., 2014; WHO, 2016). LLINs are a form of ITNs specifically designed to remain effective for many years
without re-treatment (Anuse, Sahu, Subramanian, & Gunasekaran, 2015). The use of ITNs or IRS is promoted as the major
control strategy in the malaria control and elimination plan endorsed by WHO (Churcher et al., 2016; WHO, 2016). The two
vector control methods (ITNs and IRS) are mostly used concurrently, within the same households. Some studies have sug-
gested that ITNs or IRS, if used singly, may not be enough to effectively combat malaria transmission (particularly in hol-
oendemic and hyperendemic areas), and that these two control measures should preferably be combined in those areas
(Griffin et al., 2010; Okumu&Moore, 2011; WHO, 2016). However, it remains unclear whether the concurrent use of ITNs and
IRS in the same household reduces transmission significantly, relative to using either ITNs or IRS alone (WHO, 2016) (this
forms one of the main modeling objectives of the current study).

Of the four major classes of chemical insecticides currently used in malaria control efforts (namely, pyrethroids, organo-
chlorines, organophosphates and carbamates), only the pyrethroids are approved for use in LLINs (owing to their low
mammalian toxicity and irritant effect on mosquitoes), while all four are used in IRS (WHO, 2016). Although the intensive use
of ITNs (especially) and IRS, singly or in combination, has led to a significant decline in malaria-related morbidity in endemic
areas (studies estimate 81% of the reduction of malaria burden recorded in the past 15 years are due to the use of LLINs and
IRS, with LLINs accounting for most of the reductions), this widespread and heavy use of insecticides has, unfortunately,
resulted in the emergence of vector resistance to nearly every currently available agent (Alout, Roche, Dabir, & Cohuet, 2017;
Birget & Koella, 2015; Brown et al., 2013; Choi et al., 2014; Corbel et al., 2010; Dondorp et al., 2009; Gourley, Liu, &Wu, 2011;
Griffin et al., 2010; Jones et al., 2013; Okumu & Moore, 2011; Ranson & Lissenden, 2016; White, Griffin, et al., 2011; WHO,
2016). This problem of insecticide resistance, which is more pronounced in malaria-endemic regions in sub-Saharan Africa
(Choi et al., 2014; Corbel et al., 2010; Gourley et al., 2011; Griffin et al., 2010; Jones et al., 2013; Ranson & Lissenden, 2016;
White, Griffin, et al., 2011; WHO, 2016), is, in fact, worsening particularly in sub-Saharan Africa (Ranson & Lissenden, 2016).
Rotational use of different classes of insecticides for IRS is recommended as one approach to manage insecticide resistance
(WHO, 2016). If left unchecked, the problem of insecticide resistance could lead to substantial increases in malaria incidence
and mortality, with devastating public health consequences (Ranson & Lissenden, 2016; WHO, 2016). Another important
feature of mosquito-borne diseases is the feeding and resting nature (and preferences) of adult female mosquitoes. While
some adult female mosquitoes feed indoors (endophagic), others feed outdoors (exophagic). Furthermore, some mosquitoes
prefer to rest indoors (endophilic) or outdoors (exophilic). Consequently, endophilism, facilitates the application of ITNs and
IRS to control the population of adult female mosquitoes (and, therefore, control disease spread) (Gimnig et al., 1452).

Mathematical models have been widely used to assess the population-level impact and effectiveness of various control
strategies againstmalaria (see, for instance, (Agusto et al., 2013; Anderson&May,1991; Chitnis et al., 2008;Mohammed-Awel
et al., 2017; Mohammed-Awel & Numfor, 2017; Ngonghala et al., 2014; Ngonghala et al., 2016; Prosper, Ruktanonchai, &
Martcheva, 2014; White, Griffin, et al., 2011)). However, only few of these models, which incorporate ITNs and/or IRS,
considered the effect of insecticide resistance (Barbosa & Hastings, 2012; Birget & Koella, 2015; Brown et al., 2013; Gourley
et al., 2011; Wairimu & Ronoh, 2016). Barbosa et al. (Barbosa & Hastings, 2012) developed a genetic model to predict changes
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in mosquito fitness and resistance allele frequency (parameters that describe insecticide selection, fitness cost as well as ITNs
and synergist (Piperolyn butoxide (PBO)) are incorporated). The results of their investigation show that resistance was most
sensitive to selection coefficients, fitness cost and dominance coefficients. Birget et al. (Birget & Koella, 2015) developed a
population-genetic model of the spread of insecticide-resistance in Anophelesmosquitoes in response to ITNs and larvacides.
Their study shows that the use of indoor ITNs leads to less selection pressure than the use of insecticides as larvacides. Brown
et al. (Brown et al., 2013) developed a mathematical model to investigate economically optimal strategies for mosquito
control in the presence of insecticide resistance. Consistent with previous studies, their results show that fitness costs are the
key elements in the computation of economically optimal resistance management strategies. Gourley et al. (Gourley et al.,
2011) developed a mathematical model, where the adult mosquito population is split into vulnerable or resistant (based
on whether the insecticide can have an effect or not). Their theoretical study, which does not incorporate fitness costs due to
insecticide resistance, gives global asymptotic stability results for the non-trivial resistant-only boundary equilibrium of the
model. Wairimu et al. (Wairimu & Ronoh, 2016) gave theoretical results for a mathematical model for malaria transmission
with two classes of mosquitoes (sensitive and resistant to chemical insecticides) when ITNs and IRS are used as control
strategies. Global asymptotic stability of the disease-free and endemic equilibria are proved.

In the current study, a new deterministic model is designed and used to assess the population-level impact of vector
insecticide resistance and feeding and resting preferences on malaria transmission dynamics. The model will be used to
evaluate the community-wide impact of ITNs and IRS, implemented singly or in combination. The model is formulated and
fitted (using data relevant to malaria transmission dynamics in Ethiopia) in Section 2. The asymptotic stability properties of
the associated disease-free (trivial and boundary) equilibria of the model are explored in 3. Optimal control analysis, based on
the two controls (ITNs and IRS) is carried out in Section 4. Discussion and concluding remarks are reported in Section 5.

2. Model formulation

The model to be developed is for the transmission dynamics of malaria in an endemic setting which implements a control
strategy based on using IRS or ITNs or their combination. It is assumed, for simplicity, that these strategies are only imple-
mented indoors (Okumu&Moore, 2011) and vectors can travel between indoors and outdoors. The total human population at
time t, denoted by NhðtÞ, is split into the mutually-exclusive compartments of susceptible (ShðtÞ), exposed (EhðtÞ), infectious
(IhðtÞ), and recovered (RhðtÞ) humans, so that

NhðtÞ ¼ ShðtÞ þ EhðtÞ þ IhðtÞ þ RhðtÞ:
The total adult female Anophelesmosquito population at time t, denoted byNvðtÞ, is split into the total outdoor (NvoðtÞ) and
indoor (NviðtÞ) mosquitoes, where the population of outdoor mosquitoes is further stratified in terms of susceptible outdoor
wild-type (SvwoðtÞ) and resistant-type (resistant to insecticides) (SvroðtÞ), exposed wild-type (EvwoðtÞ) and resistant-type
(EvroðtÞ) and infectious wild-type (IvwoðtÞ) and resistant-type (IvroðtÞ) outdoor mosquitoes, so that

NvoðtÞ ¼ SvwoðtÞ þ SvroðtÞ þ EvwoðtÞ þ EvroðtÞ þ IvwoðtÞ þ IvroðtÞ:
Similarly, the total population of indoor mosquitoes is classified in terms of susceptible wild-type (SvwiðtÞ) and resistant-
type (SvriðtÞ), exposed wild-type (EvwiðtÞ) and resistant-type (EvriðtÞ) and infectious wild-type (IvwiðtÞ) and resistant-type
(IvriðtÞ) indoor mosquitoes, so that

NviðtÞ ¼ SvwiðtÞ þ SvriðtÞ þ EvwiðtÞ þ EvriðtÞ þ IvwiðtÞ þ IvriðtÞ:
Hence,

NvðtÞ ¼ NvoðtÞ þ NviðtÞ:
Furthermore, the total wild-type outdoor (Nvwo), resistant-type outdoor (Nvro), wild-type indoor (Nvwi), and resistant-type
indoor (Nvri) mosquitoes are given, respectively, by

NvwoðtÞ ¼ SvwoðtÞ þ EvwoðtÞ þ IvwoðtÞ; NvroðtÞ ¼ SvroðtÞ þ EvroðtÞ þ IvroðtÞ;
NvwiðtÞ ¼ SvwiðtÞ þ EvwiðtÞ þ IvwiðtÞ; and NvriðtÞ ¼ SvriðtÞ þ EvriðtÞ þ IvriðtÞ:
When ITNs are used in the community, the average number of bites per indoor mosquito per unit time (or mosquito-
human contact rate indoors), denoted by bhi, is defined as (Agusto et al., 2013; Mohammed-Awel & Numfor, 2017):

bhi ¼ bmax � ðbmax � bminÞb; (2.1)

where bmax is maximum mosquito-biting rate, bmin is minimum mosquito-biting rate, and b is insecticide-treated bednets
coverage (or proportion of ITNs usage in the community).
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The associated forces of infection for malaria transmission are defined by (where lhvo is the human-to-vector infection rate
outdoors, lhvi is the human-to-vector infection rate indoors, lvho is the vector-to-human infection rate outdoors, and lvhi is the
vector-to-human infection rate indoors):

lhvo ¼ bvbhoIh
Nh

; lhvi ¼
bvbhiIh
Nh

; lvho ¼ bhbhoðIvwo þ IvroÞ
Nh

; and lvhi ¼
bhbhiðIvwi þ IvriÞ

Nh
; (2.2)

where bho is the average number of bites permosquito in outdoor per unit time, bv is mosquito biting rate, bh is transmission
probability from infectious mosquitoes to susceptible humans, and bv is transmission probability from infectious humans to
susceptible mosquitoes. It is assumed that mosquitoes are not produced indoors (i.e., it is assumed there is no suitable
breeding habitats indoors for mosquitoes to breed). For the wild-type and resistant-type adult female mosquitoes outdoors,
the following Verhulst-Pearl logistic growth functions, Bvw (for outdoor wild-type adult female mosquitoes) and Bvr (for
outdoor resistant-type adult female mosquitoes), are chosen (Mohammed-Awel et al., 2017):

BvwðNvÞ ¼ rvw

�
1� Nv

Kv

�
and BvrðNvÞ ¼ rvr

�
1� Nv

Kv

�
; (2.3)

where rvw >0 and rvr >0 are the production (birth) rates of new adult wild-type and resistant-type mosquitoes, respectively.
Furthermore, Kv >0 is the environmental carrying capacity of adult femalemosquitoes, and it is assumed thatNvðtÞ � Kv for all
t � 0. It is further assumed that both the resistant and wild alleles are inherited (i.e., adult female mosquitoes of resistant
(wild) genotype produce offsprings with the resistant (wild) genotype).

Themodel for the transmission dynamics of malaria, in the presence of vector control strategy based on using ITNs and IRS
(and taking into account the feeding and resting preference of adult female mosquitoes (endophagic and endopholic vs.
exophagic and exopholic mosquitoes)) is given by the following deterministic system of non-linear differential equations
(where a dot represents differentiation with respect to time t):

_Sh ¼ Lh þ rhRh � ðlvhi þ lvhoÞSh � mhSh;
_Eh ¼ ðlvhi þ lvhoÞSh � ðnh þ mhÞEh;
_Ih ¼ nhEh � ðgh þ dh þ mhÞIh;
_Rh ¼ ghIh � ðrh þ mhÞRh;
_Svwo ¼ BvwðNvÞNvwo � lhvoSvwo � mvSvwo þmioSvwi �moiSvwo;
_Evwo ¼ lhvoSvwo � ðsvw þ mvÞEvwo þmioEvwi �moiEvwo;
_Ivwo ¼ svwEvwo � mvIvwo þ a1mioIvwi � a1moiIvwo;
_Svwi ¼ �lhviSvwi � bkSvwi � uikSvwi � ½mv þ ðbþ uiÞdiw�Svwi þmoiSvwo �mioSvwi;
_Evwi ¼ lhviSvwi � bkEvwi � uikEvwi � ½svw þ mv þ ðbþ uiÞdiw�Evwi þmoiEvwo �mioEvwi;
_Ivwi ¼ svwEvwi � bkIvwi � uikIvwi � ½mv þ ðbþ uiÞdiw�Ivwi þ a1moiIvwo � a1mioIvwi;
_Svro ¼ BvrðNvÞNvro � lhvoSvro � mvSvro þmioSvri �moiSvro;
_Evro ¼ lhvoSvro � ðsvr þ mvÞEvro þmioEvri �moiEvro;
_Ivro ¼ svrEvro � mvIvro þ a1mioIvri � a1moiIvro;
_Svri ¼ bkSvwi þ uikSvwi � lhviSvri � ½mv þ ðbþ uiÞdir �Svri þmoiSvro �mioSvri;
_Evri ¼ lhviSvri þ bkEvwi þ uikEvwi � ½svr þ mv þ ðbþ uiÞdir �Evri þmoiEvro �mioEvri;
_Ivri ¼ svrEvri þ bkIvwi þ uikIvwi � ½mv þ ðbþ uiÞdir �Ivri þ a1moiIvro � a1mioIvri:

(2.4)
A schematic diagram of the model is depicted in Fig. 1 (and the state variables and parameters of the model are described
in Tables 1 and 2, respectively).

In the model (2.4), Lh is the human recruitment rate (due to immigration and birth), rh the is rate of loss of temporary
immunity acquired from prior infection (or natural immunity). Susceptible humans acquire infection following effective bites
by an infected adult female Anopheles mosquito indoors (at a rate lvhi) or outdoors (at a rate lvho). Humans in all epidemi-
ological compartments are assumed to suffer natural death at a rate mh. Exposed humans develop clinical symptoms of
malaria (and become infectious) at a rate of nh. Furthermore, infectious humans suffer additional death due tomalaria at a rate
of dh. Humans recover from clinical malaria at a rate gh.

As stated earlier, it is assumed (for simplicity) that no suitable mosquito habitats exist indoors, and that mosquito pro-
duction is limited to outdoors only. The Verhulst-Pearl logistic birth function, defined in equation (2.3), is chosen for both the
susceptible wild-type (Svwo) and resistant-type (Svro) outdoor mosquitoes. It is assumed that resistance is inherited (that is, a
resistant female adult mosquito vertically produces resistant offsprings (Gourley et al., 2011)). Outdoor susceptible
mosquitoes (Svwo and Svro) acquire malaria infection at the rate lhvo, and indoor susceptible mosquitoes (Svwi and Svri) acquire
infection at the rate lhvi. Susceptible outdoor mosquitoes move indoors at a ratemoi, and susceptible indoor mosquitoes move
outdoors at a rate mio. It is assumed that all mosquitoes suffer natural death at a rate of mv. Exposed wild-type mosquitoes



Fig. 1. The Schematic diagram of the model (2.4).
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(Evwo and Evwi) become infectious at a rate svw and exposed resistant-type mosquitoes (Evro and Evri) move to corresponding
infectious class at a rate svr . Exposed outdoor mosquitoes (Evwo and Evro) move indoors at a rate of moi, and exposed indoor
mosquitoes (Evwi and Evri) move outdoors at a rate ofmio. Similarly, infectious indoor mosquitoes (Ivwi and Ivri) move outdoors
at a rate of a1mio. Infectious outdoor mosquitoes (Ivwo and Ivro) move indoors at a rate a1moi, where the parameter 0<a1 � 1
accounts for the assumption that infectious mosquitoes transit (move) at a slower rate than susceptible mosquitoes. Similarly,
infectious indoor mosquitoes (Ivwi and Ivri) move outdoors at a rate a1mio.

It is further assumed that, due to the intensive use of ITNs and IRS, indoor wild-type mosquitoes develop resistance to the
chemical insecticide at a rate ðbþ uiÞk, where k rate of mosquito develop resistance to insecticide, ui is a proportion of houses
(indoors) sprayed with IRS, and b is ITNs coverage (or proportion of individuals who use ITNs (Matow et al., 2015)). Female
indoor mosquitoes could die when they come in contact with treated bednets or become exposed to IRS (Matow et al., 2015;
Okumu & Moore, 2011). For this reason, it is assumed that indoor wild-type mosquitoes suffer additional death due to
exposure to insecticides at a rate ðbþ uiÞdwi, where diw is death rate of wild type mosquitoes due to exposure to IRS and ITNs.
Similarly, due to the use of IRS and ITNs indoors, resistant-type mosquitoes suffer additional mortality at a rate of ðbþ uiÞdir ,
where dir≪diw is death rate of wild type mosquitoes due to the use of IRS and ITNs.

The model (2.4) is an extension of numerous malaria transmission models that assess the impact of insecticide resistance
and dynamics of resistant vectors when chemical insecticides (such as ITNs, IRS, or larvacides) are used to control the vector
population (such as those in (Barbosa & Hastings, 2012; Birget & Koella, 2015; Blayneh & Mohammed-Awel, 2014; Brown
et al., 2013; Gourley et al., 2011; Wairimu & Ronoh, 2016)) by, inter alia,

(i). including the use of ITNs and IRS control strategies where the vector population is stratified according to type (i.e., wild
or resistant to insecticides). These classifications are not included in the genetic models in (Barbosa & Hastings, 2012;
Birget & Koella, 2015; Brown et al., 2013);

(ii). incorporating mosquito feeding and resting behavior (these are not included in the models in (Barbosa & Hastings,
2012; Birget & Koella, 2015; Blayneh & Mohammed-Awel, 2014; Brown et al., 2013; Gourley et al., 2011; Wairimu &
Ronoh, 2016));

(iii). carrying out optimal control analysis of themodel with respect to the two insecticide-based controls (this is not done in
(Barbosa& Hastings, 2012; Birget& Koella, 2015; Blayneh&Mohammed-Awel, 2014; Brown et al., 2013; Gourley et al.,
2011; Wairimu & Ronoh, 2016)).



Table 1
Description of state variables of the model.

State Variable Description

Sh Population of susceptible humans
Eh Population of exposed (infected but not symptomatic) humans
Ih Population of infectious (symptomatic) humans
Rh Population of recovered humans
Svwo Population of susceptible wild-type adult female outdoor mosquitoes
Evwo Population of exposed wild-type adult female outdoor mosquitoes
Ivwo Population of infectious wild-type adult female outdoor mosquitoes
Svwi Population of susceptible wild-type adult female indoor mosquitoes
Evwi Population of exposed wild-type adult female indoor mosquitoes
Ivwi Population of infectious wild-type adult female indoor mosquitoes
Svro Population of susceptible resistant-type adult female outdoor mosquitoes
Evro Population of exposed resistant-type adult female outdoor mosquitoes
Ivro Population of infectious resistant-type adult female outdoor mosquitoes
Svri Population of susceptible resistant-type adult female indoor mosquitoes
Evri Population of exposed resistant-type adult female indoor mosquitoes
Ivri Population of infectious resistant-type adult female indoor mosquitoes
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2.1. Basic properties

It is convenient to define ðNhÞmin ¼min
�
Nhð0Þ; Lh

mhþdh

�
, rv ¼ maxfrvw; rvrg and R v ¼ rv

mv
: The following basic properties can

be established for the model (the results are standard, hence their proofs are omitted (Mohammed-Awel et al., 2017; Safi and
Garba, 2012)).

Lemma 2.1. All solutions of the model (2.4) with non-negative initial conditions remain non-negative for all time t >0.

Lemma 2.2. Consider the model (2.4) with R v >1. The following feasible region

U ¼
n
ðSh; Eh; Ih;Rh; Svwo; Evwo; Ivwo; Svwi; Evwi; Ivwi; Svro; Evro; Ivro; Svri; Evri; IvriÞ2ℝ4

þ∪ℝ
12
þ

0< ðNhÞmin � NhðtÞ �
Lh
mh

; and 0 � Nv � KvðR v � 1Þ=R v

� (2.5)

is positively-invariant and attracts all solutions of the model (2.4) in ℝ4þ∪ℝ12þ .

It should be observed that the upper bound of NvðtÞ, KvðR v � 1Þ=R v, is positive if R v ¼ rv
mv
>1 (that is, if mosquito growth

rate is higher than its death rate). In a closed environment, if the death rate of adult mosquitoes is higher than their birth rate,
then themosquito population eventually become extinct. In otherwords, the total mosquito population dies out whenR v <1.
Since the extinction of the mosquito population in a malaria-endemic community is ecologically unrealistic, it is assumed,
from now on, that R v >1.

2.2. Data fitting and parameter estimation

The model (2.4) is fitted using yearly malaria case data for Ethiopia, for the period 2000 to 2015, extracted from (Deribew
et al., 2017) (Table 3). In particular, Pearson's Chi-squared and least squaremethod (implemented in the statistical software R)
were used to fit the model (2.4) to the data. Some data parameters are obtained or estimated from literature (as described in
Table 2). The model (2.4) is fitted to the data to estimate 13 unknown parameters (notably those related to insecticide
resistance), namely Kv, rvw, rvr , svr , diw, dir , k,mio,mio, bmax, bmin, bho, and a1. Fig. 2 depicts the result of the data fitting (and the
set of estimated/fitted parameters that best fits the model is tabulated in Table 4). To theoretically measure the goodness of

the fit, the associated average relative error of the fitting was computed using the formula 1
16

P
i¼2000

2015 jyi�byij
jyij z0:196, where yi and

byi are the exact and estimated number of cases in year i ¼ 2000;2001:::2015 (depicted in Table 3), respectively. This confirms
the reasonably good fit obtained.

3. Mathematical analysis

3.1. Existence of disease-free equilibria

It is convenient to, first of all, define the quantities: g1 ¼ nv þ mh, g2 ¼ gh þ dh þ mh, g3 ¼ rh þ mh, g4 ¼ svw þ mv þmoi, g5 ¼
mv þ a1moi, g6 ¼ ðbþ uiÞkþ ðbþ uiÞdiw þ mv þ mio, g7 ¼ ðbþ uiÞkþ ðbþ uiÞdiw þ svw þ mv þ mio, g8 ¼ ðbþ uiÞkþ ðbþ uiÞdiw þ
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mv þ a1mio, g9 ¼ svr þ mv þmoi, g10 ¼ mv þ a1moi, g11 ¼ ðbþ uiÞk, g12 ¼ mv þmio þ ðbþ uiÞdir , g13 ¼ svr þ mv þ ðbþ uiÞdir þmio,
g14 ¼ mv þ a1mio þ ðbþ uiÞdir , g15 ¼ g4g7 �miomoi, g16 ¼ g5g8 � a21miomoi, g17 ¼ g9g13 �miomoi and g18 ¼ g10g14 � a21miomoi.

The model (2.4) has three disease-free equilibria, namely a trivial disease-free equilibrium (TDFE; denoted by E 0T ), a non-
trivial resistant-only disease-free boundary equilibrium (NTRDFE; denoted by E 0R) and a non-trivial co-existence disease-
free equilibrium (NTCDFE; denoted by E 0C). The expressions for the three disease-free equilibria are given below:

(i) TDFE:

E 0Tr ¼
�
S�Trh ; E�Trh ; I�Trh ;R�Trh ; S�Trvwo; E

�Tr
vwo; I

�Tr
vwo; S

�Tr
vwi; E

�Tr
vwi; I

�Tr
vwi; S

�Tr
vro ; E

�Tr
vro ; I

�Tr
vro ; S

�Tr
vri ; E

�Tr
vri ; I

�Tr
vri

�
¼

�
S�Trh ;0;0;0;0;0;0;0;0;0;0;0;0;0;0; 0

�
;

(ii) NTRDFE:

E 0R ¼ �
S�h; E

�
h; I

�
h;R

�
h; S

�
vwo; E

�
vwo; I

�
vwo; S

�
vwi; E

�
vwi; I

�
vwi; S

�
vro; E

�
vro; I

�
vro; S

�
vri; E

�
vri; I

�
vri
�

¼ �
S�h;0;0;0;0;0;0;0;0;0; S

�
vro;0;0; S

�
vri;0;0

�
;

(iii) NTCDFE:

E 0C ¼ �
S��h ; E��h ; I��h ;R��h ; S��vwo; E

��
vwo; I

��
vwo; S

��
vwi; E

��
vwi; I

��
vwi; S

��
vro; E

��
vro; I

��
vro; S

��
vri; E

��
vri; I

��
vri
�

¼ �
S��h ;0;0;0; S��vwo;0;0; S

��
vwi;0;0; S

��
vro;0;0; S

��
vri;0;0

�
;

where,
S�Trh ¼ Lh

mh
; S�h ¼ Lh

mh
; S�vro ¼ g12Kv½R r � 1�

R r ½g12 þmoi�
; S�vri ¼

moiKv½R r � 1�
R r½g12 þmoi�

; (3.1)

�� Lh �� KvðR w � 1Þg6g12rvrðR w �R rÞ
Sh ¼
mh

; Svwo ¼
R w½ðg6 þmoiÞg6g12ðR w �R rÞrvr þ g11R rmoiðR wðmv þmoi þmioÞ � rvrÞ�;

S��vwi ¼
moi

g6
S��vwo; S��vro ¼ g11moimioR wR r

g6g12rvrðR w �R rÞS
��
vwo and S��vri ¼

g11moiR r ½R wðmv þmoiÞ � rvr�
g6g12rvrðR w �R rÞ S��vwo;

(3.2)

with,
R w ¼ rvwg6
ðmv þmoiÞg6 �miomoi

and R r ¼ rvrg12
ðmv þmoiÞg12 �miomoi

: (3.3)
Since ðmv þmoiÞg6 �miomoi ¼ ðmv þmoiÞ½ðbþ uiÞðkþ diwÞ þ mv� þ mvmio >0 and ðmv þmoiÞg11 �miomoi ¼ ðmv þmoiÞ½ðbþ uiÞ
dir þ mv� þ mvmio >0, it follows thatR w >0 andR r >0. It follows from (3.1) that NTCDFE (E 0C) exists if and only ifR w >1 and
R w >R r . Similarly, it follows from (3.1) that the NTRDFE (E 0R) exists only if R r >1. Furthermore,

R wðmv þmoiÞ � rvr ¼ rvw
1� moimio

g6ðmvþmoiÞ
� rvr >0

if rvw � rvr (which is true since the reproduction fitness of the insecticide resistant mosquito reduced due to insecticide
resistance).

The term R w ¼ rvwg6
ðmvþmoiÞg6�miomoi

in (3.3) can be expressed in the following geometric series,

R w ¼ rvw
to

h
1þ hw1 h

w
2 þ �

hw1 h
w
2
�2 þ �

hw1 h
w
2
�3 þ…:

i
;

where to ¼ mv þmoi (so that, 1
to
is the average duration a susceptible wild-type and resistant-type mosquito spend outdoors),
hw1 ¼ mio
g6

is the proportion of indoor mosquitoes in Svwi class that survived and moved outdoors, and hw2 ¼ moi
mvþmoi

is the



Table 2
Description of parameters.

Parameters Description Baseline Value Source

Lh Human recruitment rate (due to birth or immigration) 2:45� 106 (per
year)

Estimated from CIA (2017)

mh Natural death rate for humans 1=62:5 (per year) Estimated from CIA (2017)
nh Rate at which exposed humans become infectious ð1=14Þ � 365 (per

year)
Ngonghala et al. (2014)

gh Recovery rate of humans ð3:5� 10�3Þ � 365
(per year)

Ngonghala et al. (2016)

rh Rate of loss of natural immunity ð5:6� 10�3Þ � 365
(per year)

Ngonghala et al. (2016)

dh Disease-induced death rate for humans ð9:0� 10�5Þ � 365
(per year)

Ngonghala et al. (2016)

Kv Environmental carrying capacity of mosquitoes 4:8� 105

(dimensionless)
Fitted

rvw Production (birth) rates of new adult wild-type female mosquitoes 77.4 (per year) Fitted
rvr Production (birth) rates of new 76.3 (per year) Fitted

adult resistant-type female mosquitoes
mv Natural death rate of mosquitoes ð1=14Þ � 365 (per

year)
Ngonghala et al. (2016)

svw Rate at which exposed wild-type adult resistant-type become infectious 36.5 (per year) Ngonghala et al. 2016)
svr Rate at which exposed resistant-type mosquitoes become infectious 43.6 (per year) Fitted
diw Death rate of wild-typemosquitoes (those exposed to insecticide) due to the use of IRS

and ITNs
40.6 (per year) Fitted

dir Death rate of resistant-type mosquitoes (those exposed to insecticide) due to the use
of IRS and ITNs

15.9 (per year) Fitted

ui Proportion of houses (indoors) sprayed with IRS 0.29
(dimensionless)

Estimated from National
malaria program (2014)

k Rate of development of resistance due to the use of ITNs or IRS 10�4 (per year) Fitted
mio Mobility rate of mosquitoes from indoors to outdoors 84.99 (per year) Fitted
moi Mobility rate of mosquitoes from outdoors to indoors 77.3 (per year) Fitted
bmax Maximum mosquito biting rate 231.35 (per year) Fitted
bmin Minimum mosquito biting rate 1:0� 10�2 (per

year)
Fitted

bho Contact rate of mosquitoes with humans outdoors 71.44 (per year) Fitted
bh Transmission probability from infectious mosquitoes to susceptible humans 22=103

(dimensionless)
Ngonghala et al. (2014)

bv Transmission probability from infectious humans to susceptible mosquitoes 48=102

(dimensionless)
Ngonghala et al. (2014)

b Insecticide-treated bednets (ITNs) coverage (or proportion of ITNs usage) 0.49
(dimensionless)

Estimated from National
malaria program (2014)

a1 Modification parameter for the assumed reduction of the mobility of infectious
vectors in relation to susceptible vectors (0<a1 <1)

0.9 (dimensionless) Fitted
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proportion of outdoor mosquitoes in Svwo class that survived and moved indoors. Similarly, R r ¼ rvrg12
ðmvþmoiÞg12�miomoi

can be

expressed as R r ¼ rvr
to
½1þ hr1h

r
2 þ ðhr1hr2Þ

2 þ ðhr1hr2Þ
3 þ …:�, where hr1 ¼ mio

g12
is the proportion of indoor mosquitoes in Svri class

that survived and moved outdoors, and hr2 ¼ moi
mvþmoi

is the proportion of outdoor mosquitoes in Svro class that survived and

moved to indoors.

3.1.1. Local asymptotic stability of NTRDFE (E 0R) and NTCDFE (E 0C)
The trivial disease-free equilibrium (TDFE) is not ecologically realistic (since it entails having no mosquitoes in the pop-

ulation). Consequently, the asymptotic stability of this equilibrium is omitted. To show the local asymptotic stability of the
NTRDFE (E 0R), it is convenient to define the quantity (which can be obtained by the routine application of the next generation
operator method on the model (2.4) around the NTRDFE (Diekmann, Heesterbeek, & Metz, 1990; Driessche & Watmough,
2002)):

R 0r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bhbvnhsvrS

�
h

g1g2
�
N�
h
�2 ðR vro þR vriÞ

vuut ; (3.4)

where,
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N�
h ¼ S�h; R vro ¼ a1S

��
vro; and R vri ¼ a2S

��
vri;

with,
a1 ¼ bhosvw½bhimoiða1g13 þ g10Þ þ bhoða1miomoi þ g13g14Þ�
g17g18

and;

a2 ¼ bhisvr½bhisvrða1miomoi þ g9g10Þ þ bhomioða1g9 þ g14Þ�
g17g18

:

The result below follows from Theorem 2 in (Driessche & Watmough, 2002).

Theorem 3.1. Consider the model (2.4) with R r >1. The resistant-only disease-free boundary equilibrium (E 0R) is locally-
asymptotically stable (LAS) if R 0r <1, and unstable if R 0r >1.

Similarly, the following reproduction threshold can be obtained by applying the next generation method on the model
(2.4) around the co-existence disease-free equilibrium (NTCDFE):

R 0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R hðR vwo þR vwi þR vro þR vriÞ

p
; (3.5)

where,
R h ¼ bhbvnhS
��
h

g1g2
�
N��
h
�2;

a3 ¼ bhosvw½a1miobhog11ða1g7 þ g5Þ þ ða1miomoi þ g7g8Þg18 þ ðg10g11 þ g18Þða1g7 þ g5Þmoibhi�
g15g16g18

;

a4 ¼ bhog11moisvr½bhiða1miomoi þ g9g10Þ þ bhomioða1g9 þ g14Þ�
g15g17g18

;

a5 ¼ bhisvw½ða1miomoi þ g4g5Þ½g11ða1bhomio þ bhig10Þ þ g18bhi� þ bhomioða1g4 þ g8Þg18�
g15g16g18

;

a6 ¼ bhig4g11svr ½bhiða1miomoi þ g9g10Þ þ bhomioða1g9 þ g14Þ�
g16g17g18

;

R vwo ¼ ða3 þ a4ÞS��vwo; R vwi ¼ ða5 þ a6ÞS��vwi; R vro ¼ a1S
��
vro; and R vri ¼ a2S

��
vri:
Since g7g10 � a21miomoi ¼ ðmv þ a1moiÞðmv þ ðbþ uiÞdirÞþ a1miomv >0, and g4g6 � a21miomoi ¼ ðmv þ a1moiÞððbþ uiÞðkþ diwÞ
þ mvÞþ a1miomv >0, it follows that R vwo >0, R vwi >0, R vro >0 and R vri >0. Hence, using Theorem 2 in (Driessche &
Watmough, 2002), the following result is established.

Theorem 3.2. Consider the model (2.4) withR w >1 andR w >R r . The non-trivial co-existence disease-free equilibrium (E 0C) is
LAS if R 0 <1, and unstable if R 0 >1.

The threshold quantity (R 0) (known as the reproduction number of the model) represents the average number of new
malaria infections in humans or vectors generated by an infectious human or vector in a human or vector population where
insecticide-based interventions (ITNs and IRS) are implemented (Anderson & May, 1991; Diekmann et al., 1990; Driessche &
Watmough, 2002; Hethcote, 2000). The epidemiological significance of Theorem 3.2 is that the disease can be effectively
controlled (when R 0 <1) if the initial sizes of the sub-populations of the model are in the basin of attraction of the NTCDFE
(E 0C).

4. Optimal control: formulation, analysis and simulations

4.1. Formulation

As stated earlier, this study assumes that IRS and ITNs are implemented indoors only (hence, these controls are not
implemented outdoors). In order to determine the optimal strategy for IRS and ITNs coverage, the indoor-residual spraying
rate (ui) is re-defined as a function of time (i.e., ui ¼ uiðtÞ). Furthermore, the constant bednets coverage (b) is re-defined as a

function of time (i.e., b ¼ bðtÞ), so that indoor the biting rate (~bhiðtÞ) is now re-defined as:



Table 3
Total number of new malaria cases per 100,000 (both male and female in Ethiopia) between 2000 and 2015 (extracted from (Deribew et al., 2017)).

Year Number of new malaria cases per 100,000 Year Number of new malaria cases per 100,000

2000 8;870 2008 4;770
2001 9;130 2009 3;050
2002 9;430 2010 1;400
2003 9;580 2011 1;300
2004 9;920 2012 1;300
2005 10;000 2013 1;130
2006 8;430 2014 1;240
2007 6;520 2015 1;180

Fig. 2. Data fitting of the model (2.4) using malaria case data from Ethiopia for the period 2000 to 2015 (given in Table 3) (Deribew et al., 2017).

Table 4
Values of estimated parameters.

Parameter Estimated value (per year) Parameter Estimated value (per year)

Kv 4:8� 108 (dimensionless) mio 84.99
rvw 77.4 mio 77.3
rvr 76.3 bmax 231.35
svr 43.6 bmin 10�2

diw 40.6 bho 71.44
dir 15.9 a1 0.9 (dimensionless)
k 10�4
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~bhiðtÞ ¼ bmax � ðbmax � bminÞbðtÞ:

Similarly, the forces of infection for malaria transmission are re-defined as:

~lvhiðtÞ ¼
bh

~bhiðtÞ½IvwiðtÞ þ IvriðtÞ�
NhðtÞ

and ~lhviðtÞ ¼
bv
~bhiðtÞIhðtÞ
NhðtÞ

; (4.1)

(while the expressions for the outdoor forces of infection, lvho and lhvo, are as defined in Section 2). The indoor mosquito
control interventions are implemented on a time interval ½0;T �, where T is the number of years for which the control program
is implemented. Themodel (2.4), with the aforementioned non-constant time-dependentmosquito controls, is nowgiven by:
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_Sh ¼ Lh þ rhRh �
�
~lvhiðtÞ þ lvho

�
Sh � mhSh;

_Eh ¼
�
~lvhiðtÞ þ lvho

�
Sh � ðnh þ mhÞEh;

_Ih ¼ nhEh � ðgh þ dh þ mhÞIh;
_Rh ¼ ghIh � ðrh þ mhÞRh;
_Svwo ¼ BvwðNvÞNvwo � lhvoSvwo � mvSvwo þmioSvwi �moiSvwo;
_Evwo ¼ lhvoSvwo � ðsvw þ mvÞEvwo þmioEvwi �moiEvwo;
_Ivwo ¼ svwEvwo � mvIvwo þ a1mioIvwi � a1moiIvwo;
_Svwi ¼ �~lhviðtÞSvwi � bðtÞkSvwi � uiðtÞkSvwi � ½mv þ ðbðtÞ þ uiðtÞÞdiw�Svwi þmoiSvwo �mioSvwi;
_Evwi ¼ ~lhviðtÞSvwi � bðtÞkEvwi � uiðtÞkEvwi � ½svw þ mv þ ðbðtÞ þ uiðtÞÞdiw�Evwi þmoiEvwo �mioEvwi;
_Ivwi ¼ svwEvwi � bðtÞkIvwi � uiðtÞkIvwi � ½mv þ ðbðtÞ þ uiðtÞÞdiw�Ivwi þ a1moiIvwo � a1mioIvwi;
_Svro ¼ BvrðNvÞNvro � lhvoSvro � mvSvro þmioSvri �moiSvro;
_Evro ¼ lhvoSvro � ðsvr þ mvÞEvro þmioEvri �moiEvro;
_Ivro ¼ svrEvro � mvIvro þ a1mioIvri � a1moiIvro;
_Svri ¼ bðtÞkSvwi þ uiðtÞkSvwi � ~lhviðtÞSvri � ½mv þ ðbðtÞ þ uiðtÞÞdir �Svri þmoiSvro �mioSvri;
_Evri ¼ ~lhviðtÞSvri þ bðtÞkEvwi þ uiðtÞkEvwi � ½svr þ mv þ ðbðtÞ þ uiðtÞÞdir �Evri þmoiEvro �mioEvri;
_Ivri ¼ svrEvri þ bðtÞkIvwi þ uiðtÞkIvwi � ½mv þ ðbðtÞ þ uiðtÞÞdir �Ivri þ a1moiIvro � a1mioIvri;

(4.2)

subject to the initial conditions:

Shð0Þ ¼ S0h; Ehð0Þ ¼ E0h; Ihð0Þ ¼ I0h; Rhð0Þ ¼ R0h; Svwoð0Þ ¼ S0vwo; Evwoð0Þ ¼ E0vwo; Ivwoð0Þ ¼ I0vwo;

Svwið0Þ ¼ S0vwi; Evwið0Þ ¼ E0vwi; Ivwið0Þ ¼ I0vwi; Svroð0Þ ¼ S0vro; Evroð0Þ ¼ E0vro; Ivroð0Þ ¼ I0vro;
Svrið0Þ ¼ S0vri; Evrið0Þ ¼ E0vri; and Ivrið0Þ ¼ I0vri:

(4.3)

The optimal control problem seeks to minimize the number of humans infected with malaria, the number of infectious
mosquitoes, the number of resistant-type mosquitoes, and the cost of implementation of ITNs and IRS controls in the
community. In order to do this, the following objective functional is formulated:

Jðui; bÞ ¼
ZT
0

½ðA1IhðtÞ þ A2ðIvwoðtÞ þ IvwiðtÞ þ IvroðtÞ þ IvriðtÞÞ�dt þ
ZT
0

A3NvrðtÞdt

þ
ZT
0

½B1bðtÞNhðtÞ þ B2ðbðtÞ þ uiðtÞÞNviðtÞ�dt þ
ZT
0

h
C1b

2ðtÞ þ C2u
2
i ðtÞ

i
dt;

(4.4)

where NvrðtÞ ¼ SvroðtÞ þ EvroðtÞ þ IvroðtÞ þ SvriðtÞ þ EvriðtÞ þ IvriðtÞ is the total number of resistant-type mosquitoes,
NviðtÞ ¼ SvwiðtÞ þ EvwiðtÞ þ IvwiðtÞ þ SvriðtÞ þ EvriðtÞ þ IvriðtÞ is the total number of indoor mosquitoes, and ½0; T� is the time in-
terval over which the ITNs and IRS programs are implemented.

In (4.4), Ai; Bj and Ck (for i ¼ 1;2;3; j ¼ 1;2;3; and k ¼ 1;2) are positive constants that balance the relative importance of

terms in the objective functional J. The integrand in
R T
0 ðA1IhðtÞ þ A2ðIvwoðtÞ þ IvwiðtÞ þ IvroðtÞ þ IvriðtÞÞÞdt gives the weighted

number of humans infected with malaria and the total weighted number of infected mosquitoes; and the integrand inR T
0 A3NvrðtÞdt is the weighted number of resistant-type mosquitoes over the time period T. The term bðtÞNhðtÞ represents the
total number of humans protected by ITNs, while the term ðbðtÞ þ uiðtÞÞNviðtÞ is the total number of indoor mosquitoes

affected by the ITNs and IRS. The term
R T
0 ½B1bðtÞNhðtÞ þ B2ðbðtÞ þ uiðtÞÞNviðtÞ þ C1b2ðtÞ þ C2u2i ðtÞ�dt gives the total cost of

implementing ITNs and IRS, the constants B1 is the cost associated with the use of ITNs to protect humans frommosquito bite
and B2 is the cost associated with the use of the insecticide in ITNs and IRS to kill adult mosquitoes over the time period T.

Consequently, the optimal control problem is to find the pair ðu�l ;b�Þ2U , such that

J
�
u�i ; b

�� ¼ inf
ðui;bÞ2U

Jðui; bÞ;
where the set of all admissible controls (U ) is given by:

U ¼ fðui; bÞ2ðL∞ð0; TÞÞ2



0 � uiðtÞ � 1; 0 � bðtÞ � 1; ui and b are Lebesgue measurable

o
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The following result can be established using the approach in (Mohammed-Awel et al., 2017; Mohammed-Awel&Numfor,
2017).

Theorem 4.1. Given the controls ðb;uiÞ2U , there exists a positive, bounded solution ðSh; Eh; Ih;Rh; Svwo; Evwo; Ivwo; Svwi; Evwi; Ivwi;

Svro; Evro; Ivro; Svri; Evri; IvriÞ to the initial value problem (4.2) and initial conditions (4.3).
4.2. Analysis: existence, characterization and uniqueness of optimal control

Theorem 4.2. There exist optimal controls b� and u�i that minimize the objective functional J subject to the system (4.2).

The Proof of Theorem 4.2, based on using the techniques in (Mohammed-Awel et al., 2017; Mohammed-Awel & Numfor,
2017), is given in Appendix A.

Pontryagin's Maximum principle (Pontryagin, Boltyanskii, Gamkrelidze, & Mishchenko, 2002) is used to derive necessary
conditions that an optimal control must satisfy. This principle converts the problem of minimizing the objective functional
(4.4) subject to the state system (4.2) into a problem of minimizing a Hamiltonian (ℍ), defined below, with respect to the
controls ðb;uiÞ:

ℍ ¼ A1IhðtÞ þ A2ðIvwoðtÞ þ IvwiðtÞ þ IvroðtÞ þ IvriðtÞÞ þ A3NvrðtÞ
þB1bðtÞNhðtÞ þ B2ðbðtÞ þ uiðtÞÞNviðtÞ þ C1b

2ðtÞ þ C2u
2
i ðtÞ

þx1

�
Lh þ rhRh �

�
~lvhiðtÞ þ lvho

�
Sh � mhSh

�
þx2

��
~lvhiðtÞ þ lvho

�
Sh � ðnh þ mhÞEh

�
þx3ðnhEh � ðgh þ dh þ mhÞIhÞ

þx4ðghIh � ðrh þ mhÞRhÞ
þx5ðBvwðNvwÞNvwo � lhvoSvwo � mvSvwo þmioSvwi �moiSvwoÞ

þx6ðlhvoSvwo � ðsvw þ mvÞEvwo þmioEvwi �moiEvwoÞ
þx7ðsvwEvwo � mvIvwo þ a1mioIvwi � a1moiIvwoÞ

þx8

�
� ~lhviðtÞSvwi � bðtÞkSvwi � uiðtÞkSvwi � ½mv þ ðbðtÞ þ uiðtÞÞdiw�Svwi þmoiSvwo �mioSvwi

�
þx9

�
~lhviðtÞSvwi � bðtÞkEvwi � uiðtÞkEvwi � ½svw þ mv þ ðbðtÞ þ uiðtÞÞdiw�Evwi þmoiEvwo �mioEvwi

�
þx10ðsvwEvwi � ½ðbðtÞ þ uiðtÞÞkþ mv þ ðbðtÞ þ uiðtÞÞdiw�Ivwi þ a1moiIvwo � a1mioIvwiÞ

þx11ðBvrðNvroÞNvro � lhvoSvro � mvSvro þmioSvri �moiSvroÞ
þx12ðlhvoSvro � ðsvr þ mvÞEvro þmioEvri �moiEvroÞ

þx13ðsvrEvro � mvIvro þ a1mioIvri � a1moiIvroÞ
þx14

�
bðtÞkSvwi þ uiðtÞkSvwi � ~lhviðtÞSvri � ½mv þ ðbðtÞ þ uiðtÞÞdir �Svri þmoiSvro �mioSvri

�
þx15

�
~lhviðtÞSvri þ bðtÞkEvwi þ uiðtÞkEvwi � ½svr þ mv þ ðbðtÞ þ uiðtÞÞdir �Evri þmoiEvro �mioEvri

�
þx16ðsvrEvri þ ðbðtÞ þ uiðtÞÞkIvwi � ½mv þ ðbðtÞ þ uiðtÞÞdir þ a1mio�Ivri þ a1moiIvroÞ:

(4.5)
The differential equations governing the adjoint variables (xi; i ¼ 1;2;…;16) are obtained by differentiating ℍ partially
with respect to each state variable of the system (4.2). This gives:

_x1 ¼ �vℍ
vSh

; _x2 ¼ �vℍ
vEh

; _x3 ¼ �vℍ
vIh

; _x4 ¼ � vℍ
vRh

; _x5 ¼ � vℍ
vSvwo

; _x6 ¼ � vℍ
vEvwo

; _x7 ¼ � vℍ
vIvwo

;

_x8 ¼ � vℍ
vSvwi

; _x9 ¼ � vℍ
vEvwi

; _x10 ¼ � vℍ
vIvwi

; _x11 ¼ � vℍ
vSvro

; _x12 ¼ � vℍ
vEvro

; _x13 ¼ � vℍ
vIvro

;

_x14 ¼ � vℍ
vSvri

; _x15 ¼ � vℍ
vEvri

; and _x16 ¼ � vℍ
vIvri

:

The resulting adjoint system is given by:
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(4.6)
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subject to the transversality conditions (Pontryagin et al., 2002):

xiðTÞ ¼ 0; for i ¼ 1;2;3;…;16: (4.7)
In characterizing the optimal control, the Hamiltonian (ℍ) in Equation (4.5) is differentiated partially with respect to the
controls b and ui, to get:

vℍ
vb

¼ 0;
vℍ
vui

¼ 0;
on the interior of the control set, where

vℍ
vb

¼ B1Nh þ B2Nvi þ 2C1bþ ðx1 � x2Þbhðbmax � bminÞðIvwi þ IvriÞ
Sh
Nh

þðx8 � x9Þbvðbmax � bminÞSvwi
Ih
Nh

� ðx8Svwi þ x9EvwiÞðkþ diwÞ � x10ðkþ diwÞIvwi

þkðl14Svwi þ l15EvwiÞ � dirðl14Svri þ l15EvriÞ þ ðx14 � x15Þbvðbmax � bminÞSvri
Ih
Nh

þx16ðkIvwi � dir IvriÞ;
vℍ
vui

¼ B2Nvi þ 2C2ui � ðkþ diwÞ½l8Svwi þ l9Evwi� � l10ðkþ diwÞIvwi þ kðl14Svwi þ l15EvwiÞ

�dirðl14Svri þ l15EvriÞ þ x16ðkIvwi � dir IvriÞ:
The result below follows from the Pontryagin's Maximum principle (Pontryagin et al., 2002).

Theorem 4.3. Given an optimal, ðb�;u�i Þ, and solutions, Sh, Eh, Ih, Rh, Svwo, Evwo, Ivwo, Svwi, Evwi, Ivwi, Svro, Evro, Ivro, Svri, Evri, and Ivri of
the corresponding state system (4.2), then there exist adjoint variables xi for i ¼ 1;2;3;…;16, which satisfy the adjoint system in
(4.6) and transversality conditions (4.7). Furthermore, the optimal controls ðb�;u�i Þ are characterized as

b� ¼ min


bmax;max



0;

JðtÞ
2C1

��
and u�i ¼ min



umax
i ;max



0;

FðtÞ
2C2

��
; (4.8)

where,

J ¼ ðx2 � x1Þbhðbmax � bminÞðIvwi þ IvriÞ
Sh
Nh

þ ðx9 � x8Þbvðbmax � bminÞSvwi
Ih
Nh

þ ðx8Svwi þ x9IvwiÞðkþ diwÞ

þ x10ðkþ diwÞIvwi � kðx14Svwi þ x15EvwiÞ þ dirðx14Svri þ x15EvriÞ � ðx14 � x15Þbvðbmax � bminÞSvri
Ih
Nh

� x16ðkIvwi

� dir IvriÞ � B1Nh � B2Nvi;

F ¼ ðkþ diwÞ½x8Svwi þ x9Evwi� þ x10ðkþ diwÞIvwi � kðx14Svwi þ x15EvwiÞ þ dirðx14Svri þ x15EvriÞ � x16ðkIvwi � dir IvriÞ
� B2Nvi;

where bmax is the maximum ITNs coverage in the community and umax
i the maximum IRS coverage in the community.

Furthermore, the following result holds.

Theorem 4.4. The adjoint functions defined in the system (4.6) are bounded.
Proof. The adjoint system in equation (4.6) is linear in the adjoint variables xj (j ¼ 1;2;…;16). Since it is a linear system in

finite time with bounded coefficients, it follows that adjoint variables xj (j ¼ 1;2;…;16) are uniformly-bounded. The system
consisting of the state system, adjoint system and optimal control characterization (equations (4.2), (4.6), and (4.8)) is called
the optimality system. Since the state and adjoint functions are bounded (from Theorems 4.1 and 4.4), the following theorem
that characterizes uniqueness of the optimality system for small time is established. This type of “small time” uniqueness
result is standard in nonlinear systems with opposite orientation (Fister, Lenhart, & McNally, 1998).

Theorem 4.5. For a short time period, the solution to the optimality system (equations (4.2), (4.6), and (4.8)) is unique.
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4.3. Numerical simulations of optimal control problem

The optimality system (consisting of equations (4.2), (4.6) and (4.8)) is solved numerically using the forward-backward
sweep numerical method (Lenhart & Workman, 2007; Mohammed-Awel et al., 2017; Mohammed-Awel & Numfor, 2017).
The method requires an initial value on the optimal control pair ðb�;u�i Þ. The initial condition in (4.3) is used to solve the state
system forward in time using the MATLAB built-in ODE45 routine. Next, the adjoint system is solved using the transversality
condition (4.7) and the approximated solution of the state system. Then, the value control variables are computed using the
control characterization in (4.8), and the control pairs ðb�;u�i Þ are updated via a convex combination of previous and current
values of the control characterization. The process continues until the state variables, adjoint and control values converge.

The parameter values in Table 2 (relevant to the demography and malaria transmission dynamics in Ethiopia (CIA, 2017;
Deribew et al., 2017)), and the estimated values of weight constants in the objective functional, are used in the numerical
computations. Since the recent estimate for the cost of an ITN is between $1:65 and $4:15 (UNICEF), we set B1 ¼ 1:65. Further,
based on the estimations in (White, Conteh, Cibulskis & Ghani, 2011), we set B2 ¼ 2B1 and C1 ¼ 2C2. Furthermore, bmax and
umax
i are set at 80% coverage based on the target coverage of IRS and ITNs used in (Griffin et al., 2010). Moreover, the host

populations and control functions in the objective functional (4.4) are balanced by choosing appropriate constant weights A1,
A2, and A3. Furthermore, it is assumed that inmalaria-endemic communities, the order of priorities are (i) tominimize disease
in the human population, (ii) to minimize disease in the mosquito population, and (iii) to minimize insecticide resistance in
the mosquito population. Thus, the weights A1, A2 and A3 are chosen based on the ordering A1 >A2 >A3. A complete list of the
estimated values of the optimal control-related parameters is given in Table 5.

The population-level effectiveness of the following control strategies will be evaluated:

� Strategy 1: Optimal ITNs-only strategy (i.e., b � 0 and ui ¼ 0).
� Strategy 2: Optimal IRS-only strategy (i.e., b ¼ 0 and ui � 0).
� Strategy 3: Combined optimal ITNs-IRS strategy (i.e., ui � 0 and b � 0).

For each of the aforementioned strategies, the optimal solution for themodel (4.2) is solved over a time period (T) of fifteen
years (i.e., T ¼ 15 years) for malaria transmission setting in Ethiopia (unknown parameters are estimated by fitting model
(2.4) to data from Ethiopia). Based on the report in (Deribew et al., 2017) (for malaria cases and the estimated Ethiopian

population for the year 2000), the following initial values are chosen: S0h ¼ 67;000;000, E0h ¼ 1;042;900, I0h ¼ 5;942;900,

R0h ¼ 1;042;900, S0vwo ¼ 74;000;000, E0vwo ¼ 70;000, I0vwo ¼ 10, S0vwi ¼ 1;791;889, E0vwi ¼ 1, I0vwi ¼ 0, S0vro ¼ 10, E0vro ¼ 1, I0vro ¼
0, S0vri ¼ 1;000, E0vri ¼ 1 and I0vri ¼ 0. Parameter values for these simulations are as given in Tables 2 and 5, and in the absence
of control ITNs and IRS coverages are set at b ¼ 0 and ui ¼ 0.

It is, first of all, assumed that chemical insecticides have been used in Ethiopia in the past, and that insecticides resistant
vectors exist in the community (so that non-zero initial values of the resistant-type mosquito population can be used in the
simulations). Plots for the proportion of infectious humans (that is, the ratio of infectious humans at time t, that is IhðtÞ=NhðtÞ,
in the community) are generated. Furthermore, for comparison purposes, the plots for the worst-case scenario (i.e., in the
absence of any intervention/control) are generated (and used in these plots). The frequency of resistance allele (denoted by p)
is defined as the proportion of resistant-type mosquitoes (that is, p ¼ Nvr=Nv), and the frequency of wild-type allele (denoted
by q) is defined as the proportion of wild-type mosquitoes in the mosquito population (that is, q ¼ 1� p).

4.3.1. Simulations for strategy 1: optimal ITNs-only strategy (that is, b � 0 and ui ¼ 0)
The model (2.4) is now simulated to assess the community-wide impact of the singular implementation of an ITNs-only

strategy (Strategy 1), and the results obtained are depicted in Fig. 3. It follows from this figure that, in the presence of the
optimal level of the ITNs-only control, the frequency of the resistant allele remained at zero for the first 1.5 years, and then
increased slowly to 0.5 during the next year. It then increased rapidly to unity a year later (and remained at unity for the
remaining duration of the control period) (Fig. 3(a)). Similarly, the frequency of the wild-type allele remained at unity for the
first 1.5 years, and then decreased slowly to 0.5 a year later. It then decreased rapidly to zero during the next one year and
remained at zero for the remaining duration of the control period (Fig. 3(a)). This figure further shows that, for the worst-case
scenario with no intervention (i.e., b ¼ ui ¼ 0), the percentage of infectious humans increased from the initial 8.6%e53% for
the first one year, and then decreased to 47% during the next 3 years (and remained there for the next 11 years) (Fig. 3 (b)). On
the other hand, in the presence of the optimal level of the ITNs-only strategy, the percentage of infectious humans decreased
Table 5
Values of the weight coefficients in the objective functional (4.4).

Parameter Value Parameter Value Parameter Value Parameter Value

A1 1� 103 B1 1.65 C1 8� 108 bmax 0.8
A2 A1=5 B2 2B1 C2 2C1 umax

i 0.8
A3 3A2=4



Fig. 3. Numerical simulations of the model (4.2) for Strategy 1. Parameter values used (other than the control parameters b and ui) are as given in Tables 2 and 5.
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from the initial 8:6% to 3:1% during the first 3 years, and then increased slowly to 4.1% during the next 9 years. It further
decreased slowly to 3.3% during the next 3 years (Fig. 3 (b))). Simulations for the profile of infectious humans, in the presence
and absence of this ITNs-only control, are depicted in Fig. 3 (c), fromwhich it follows that the implementation of the optimal
ITNs-only strategy dramatically decreases the disease burden, in comparison to the worst-case scenario. The profile of the
control b�, depicted in Fig. 3 (d), shows that the optimal ITNs-only control strategy is at the maximum coverage (80%) (for the
first 1.2 years), and decreased to 72% during the next 1.6 years. It then increased to 80% during the next 2.3 years and remained
at 80% during the rest of the control implementation period. The implication of this result is that the use of the ITNs-only
strategy (with coverage at 80%) can significantly decrease the number of infectious humans (from 8.6% to as low as 3.1%)
within 3 years. In summary, the community-wide implementation of an optimal ITNs-only strategy (with coverage at 80%)
can significantly reduce disease burden (as measured in terms of reduction of the percentage of infectious humans in the
population) and effectively manage insecticide resistance during the first 3.5 years of implementation. Unfortunately,
however, such insecticide resistance is not effectivelymanaged after the first four years of the 15-year implementation period.

4.3.2. Simulations for strategy 2: optimal IRS-only strategy (that is, b ¼ 0 and ui � 0)
Themodel (2.4) is now simulated to assess the impact of the singular implementation of IRS-only strategy (Strategy 2). The

simulations results obtained show that the dynamics of the frequency of both the resistance (p) andwild (q) alleles are similar
to the corresponding dynamics observed when Strategy 1 was implemented (see Figs. 3(a) and 4(a)). Further, when the
optimal IRS-only Strategy is implemented, it was seen that the percentage of infectious humans increased rapidly (from the
initial 8:6% to 43%) for the first 4 years, and then decreased slowly to 40% during the next 6 years (and remained there for the
remaining duration of the control period) (Fig. 4 (b)). Furthermore, the results depicted in Fig. 4 (c) show that the disease
burden was not reduced with the implementation of an optimal IRS-only strategy. The control profile (depicted in Fig. 4 (d))
shows that the optimal IRS coverage increased quickly to 60% during the first two months, and continued to increase to 80%
during the next 10 months (and remained there for the rest of the implementation of the control period). In summary, the
community-wide implementation of the optimal IRS-only strategy resulted in an increase in the percentage of infectious
humans (from the initial 8.6% to as high as 43% during the first four years of the implementation period) and insecticide
resistance (with all adult female vectors becoming wholly resistant after 4 years of implementation). Thus, unlike in the case
where an optimal ITNs-only strategy is implemented, the singular implementation of an optimal IRS-only strategy does not
offer any population-level benefit, vis a vis decreasing disease burden or effectively managing vector insecticide resistance (in
fact, it is detrimental in the long run).

4.3.3. Simulations for strategy 3: combined optimal ITNs-IRS strategy (that is, ui � 0 and b � 0)
Strategy 3 entails the implementation of the combined optimal ITNs and IRS strategies. Here, too, the dynamics of the

allele frequencies p and q are similar to those observed when Strategy 1 or Strategy 2 was singularly implemented (see Figs.



Fig. 4. Numerical simulations of the model (4.2) for Strategy 2. Parameter values (other than the control parameters b and ui) are as given in Tables 2 and 5.
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3(a), 4 (a) and 5(a)). This figure further shows that this strategy manages insecticide resistance effectively during the first 3.5
years of implementation of the control, and fails to do so thereafter. Fig. 5 (b) shows that the percentage of infectious humans
decreased from the initial 8:6% to 3% during the first 2.5 years, and then decreased slowly to less than 1% during the rest of the
control implementation period (Fig. 5 (b)). Further, Fig. 5 (c) shows a dramatic reduction in the number of infectious humans
(Fig. 5(b) and (c) show effective disease control, or elimination, after about 10 years of the implementation of this strategy).
The profiles of the controls ðb�;u�i Þ, depicted in Fig. 5 (d) and (e), show that the optimal ITNs coverage is maximum at 80% (for
the first 1 year), and decreased to 72.8% during the next 1.6 years, and then increased to (and settled at) 80% during the next
Fig. 5. Numerical simulations of the model (4.2) for Strategy 3. Parameter values (other than the control parameters b and ui) are as given in Tables 2 and 5.



Fig. 6. Numerical simulations of the model (4.2) for Strategy 3 where rvr is decreases to rvr ¼ 70:5 from the fitted value rvr ¼ 76:3, other parameter values (other
than the control parameters b and ui) are as given in Tables 2 and 5.
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2.3 years. On the other hand, the optimal IRS coverage is initially zero for the first 2 years, and then increased to 50% during
the next 3 years. It then decreased slowly to 48% for the remaining duration of the control implementation period. In
summary, while the community-wide implementation of the optimal combined ITNs-IRS strategy (Strategy 3), with high
enough ITNs coverage, can lead to the elimination of the disease, it fails to effectively manage insecticide resistance (with the
frequency of the resistant allele reaching 100% after 4 years of implementation of this strategy).

4.3.4. Simulations for strategy 3 for decreased birth rate of new adult resistant-type mosquitoes
In order to assess the impact of the expected fecundity-related fitness cost of insecticide resistance (Alout et al., 2016;

Alout et al., 2017), the model (2.4), subject to Strategy 3, is simulated for the special case where the birth rate of new adult
resistant-type female mosquitoes (rvr) is reduced from the baseline (fitted) value of rvr ¼ 76:3 to rvr ¼ 70:5 (that is, the birth
rate is reduced byz8% to account for fitness cost of resistancewith respect to fecundity). The simulation results generated for
this special case of Strategy 3 are depicted in Fig. 6, from which it follows that the frequency of resistant allele remained at
zero for the first 6 years, and then increased slowly to 0.5 during the next 2 years. It then increased rapidly to unity during the
next 2 years and remained at unity for the remaining duration of the control period (Fig. 6 (a)). Similarly, the frequency of
wild-type allele remained at unity initially (for the first 6 years), and then decreased slowly to 0.5 during the next 2 years. It
further decreased to zero during the next 2 years and remained at zero for the remaining duration of the control period (Fig. 6
(a)). Further, the population of infectious humans decreased from the initial 8:6% to 2% during the first 5 years, and then
increased to 3.6% during the next 2 years. It then decreased slowly to less than 1% for the next 3 years (and remained at less
than 1% for the remaining duration of the control period) (Fig. 6 (b)). Fig. 6 (c) shows a dramatic reduction in the number of
infectious humans, in comparison to the worst-case scenario. Additionally, the profiles of the controls ðb�;u�i Þ, depicted in
Fig. 6 (d) and (e), show that the optimal ITNs coverage rapidly increased from zero to 80% and remained at 80% (for the first
one year), then decreased to 46% during the next 4 years. It then increased to 80% during the next 3 years and remained there
for the rest of the control period (Fig. 6 (d)). Similarly, the optimal IRS coverage is initially zero for the first 4.5 years, and then
increased slowly to 41% during the next 5.5 years and remained there for the rest of the control period (Fig. 6 (e)). In summary,
these simulations show that, for the special case of the model (2.4) with the birth rate of resistant mosquitoes is marginally
reduced (from rvr ¼ 76:3 to rvr ¼ 70:5) to account for the fitness cost of resistance (with regards to fecundity), the
community-wide implementation of the combined ITNs-IRS strategy (i.e., Strategy 3) can lead to the effective control of the
disease, while also effectively managing insecticide resistance, during the first 8 years of implementation. Unfortunately,
however, insecticide resistance develops during the next 7 years of the control implementation period.

5. Discussion and conclusions

A new mathematical model for malaria transmission dynamics, which incorporates the dynamics of resistant-type and
wild-type mosquitoes to insecticides, is presented. Indoor and outdoor mosquitoes are stratified in separate classes, and ITNs
and IRS are applied indoors. Back-and-forth mobility of mosquitoes, between indoors and outdoors, is incorporated. The
model is rigorously analysed to gain insight into its qualitative features. It is shown that its nontrivial disease-free equilibrium
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is locally-asymptotically stable when ever a certain epidemiological threshold (denoted by R 0) is less than unity. The
epidemiological consequence of this (local asymptotic stability) result is that, for the case with small number of infectives (in
the basin of the disease-free equilibrium) the use of the two control measures (ITNs and IRS) could lead to the effective control
(or elimination) of the disease in the community if the epidemiological threshold (R 0) can be brought to (and maintain at) a
value of less than unity.

Furthermore, optimal control analysis is used to assess the population-level impact of the two vector control strategies
considered in this study (i.e., the singular and combined use of IRS and ITNs). In particular, an optimal control problem, based
on minimizing infection in the hosts (humans and mosquitoes), insecticide resistance in the vector and the cost of imple-
menting the two controls in the community, is formulated (and solved numerically). Numerical simulations of the resulting
optimal control problem, using parameter values obtained from fitting the model (2.4) with data relevant to malaria
transmission dynamics in Ethiopia, show that:

(a) the singular implementation of an optimal ITNs-only strategy (Strategy 1) in the community could lead to a dramatic
reduction in the disease burden in humans (e.g., it reduces the percentage of infectious humans from the initial assume
8.6% to as low as 3.3%) and effectively manage insecticide resistance during the first 3.5 years of its implementation.
Unfortunately, however, it fails to continue to effectivelymanage the insecticide resistance after the first 4 years (Fig. 3);

(b) unlike for the case for the singular implementation of an optimal ITNs-only strategy, the singular implementation of an
optimal IRS-only strategy (Strategy 2) in the community fails to lead to either the effective control of the disease or
manage insecticide resistance. In fact, it resulted in an increase in the percentage of infectious humans in the com-
munity from the initial 8.6% to as high as 40%. Furthermore, it fails to manage insecticide resistance after the first 4
years of its implementation (Fig. 4);

(c) like for the case of the singular implementation of an optimal ITNs-only strategy, the implementation of the combined
optimal ITNs-IRS strategy (Strategy 3) in the community resulted (expectedly) in a dramatic reduction in the disease
burden (in particular, it reduces the percentage of infectious humans in the community from the initial 8.6% to as lowas
1%) (Fig. 5), in addition to effectively managing insecticide resistance during the first 3.5 years of its implementation
(albeit is fails to manage such insecticide resistance thereafter);

(d) for the case when the expected fitness cost of insecticide resistance with respect to fecundity is accounted for (by
reducing the birth rate of new adult resistant-type female mosquitoes (rvr) from the fitted value of rvr ¼ 76:3 to rvr ¼
70:5), the combined optimal ITNs-IRS strategy (Strategy 3) led to the effective control of the disease, as well as manage
resistance effectively during the first 8 years of implementation of the strategy (this strategy fails to manage such
insecticide resistance thereafter) (Fig. 6).

This study shows that the singular use of an optimal ITNs-only strategy, or in combination with optimal IRS, can lead to
effective control of the disease, while also effectively managing insecticide resistance during the first few years of its
implementation, in the malaria-endemic setting (Ethiopia) considered. It is worth emphasizing that one possible explanation
for the fact that some of our results (Figs. 3 and 5) show effective disease control but insecticide resistance is not effectively
managed, is that the fitness costs associated with insecticide resistance (measured by the fitted parameter values) is high.
When these costs are reduced (e.g., when the birth rate of resistant mosquitoes is reduced, to account for the fitness cost of
resistance with respect t fecundity), the optimal combined ITNs-IRS strategy controlled both the disease and insecticide
resistance for the first 8 years (Fig. 6). This result is in agreement with the results reported in (Barbosa & Hastings, 2012;
Brown et al., 2013) that fitness costs are key elements in disease control and insecticide resistance management strategies.
Our study, therefore, calls for further lab experimentation by entomologists (and modeling work) to obtain data that can be
used to obtain improved estimates of the fitness-related parameters. This is crucially needed for gaining better understanding
(and realistically quantifying) the population-level impact of insecticide resistance on the epidemiology and control of
malaria. In summary, this study shows that the prospect of the effective control of malaria spread (while minimizing the risk
of insecticide resistance in the female adult mosquito population), using ITNs alone or its combination with and IRS, are
promising, provided that the effectiveness and coverage levels of these (ITNs-only or the combined ITNs-IRS) interventions
are at optimal levels.
Acknowledgments

The authors are grateful to National Institute forMathematical and Biological Synthesis (NIMBioS) for funding theWorking
Group on Climate Change and Vector-borne Diseases (VBDs) held from 2013 to 2015. NIMBioS is an Institute sponsored by the
National Science Foundation, the U.S. Department of Homeland Security, and the U.S. Department of Agriculture through NSF
Award # EF-0832858, with additional support from The University of Tennessee, Knoxville. The authors are grateful to the
anonymous reviewers for their constructive comments.



J. Mohammed-Awel et al. / Infectious Disease Modelling 3 (2018) 301e321320
Appendices
A. Proof of Theorem 4.2

Proof. The state functions are positive and controls are Lebesgue measurable, then it follows that Jðb;uiÞ � 0; cðb;uiÞ2U .
Therefor, inf ðb;uiÞ2U Jðb;uiÞ exists and is finite. Hence, there exists a minimizing sequence of controls ðbn;uni Þ2U such that

lim
n/∞

J
�
bn;uni

� ¼ inf
ðb;uiÞ2U

Jðb;uiÞ:

n n n n n n n n n n n n n n n n
Let Sh, Eh, Ih , Rh , Svwo, Evwo, Ivwo, Svwi, Evwi, Ivwi, Svro, Evro, Ivro, Svri, Evri, and Ivri be corresponding state trajectories. Due to
uniform boundedness of state sequences, their derivatives are uniformly bounded. Therefore, the set sequences are Lipschitz
continuous with the same constant. Thus, by the Arzela-Ascoli Theorem, there exist S�h, E

�
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�
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Since jjbjjL∞ � C and jjuijjL∞ � ~C, for some positive constants C >0 and ~C >0, there exist b ;ui 2L ð½0; T �Þ such that on a
subsequence

bn .b� and uni .u�i weakly in L2ð½0; T�Þ;n/∞:

2
Using the lower semi-continuity of L � norm with respect to weak convergence, we have
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Using the convergence of the sequences fShgn¼1, fEhgn¼1, fIhgn¼1, fRhgn¼1, fSvwogn¼1, fEvwogn¼1, fIvwogn¼1, fSvwign¼1,
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we have that S�h, E
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control pair ðb�;u�i Þ. Thus, ðb�;u�i Þ is an optimal control pair.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.idm.2018.10.003.
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