1,058 research outputs found
Gully Formation at the Haughton Impact Structure (Arctic Canada) Through the Melting of Snow and Ground Ice, with Implications for Gully Formation on Mars
The formation of gullies on Mars has been the topic of active debate and scientific study since their first discovery by Malin and Edgett in 2000. Several mechanisms have been proposed to account for gully formation on Mars, from dry mass movement processes, release of water or brine from subsurface aquifers, and the melting of near-surface ground ice or snowpacks. In their global documentation of martian gullies, report that gullies are confined to ~2783S and ~2872N latitudes and span all longitudes. Gullies on Mars have been documented on impact crater walls and central uplifts, isolated massifs, and on canyon walls, with crater walls being the most common situation. In order to better understand gully formation on Mars, we have been conducting field studies in the Canadian High Arctic over the past several summers, most recently in summer 2018 and 2019 under the auspices of the Canadian Space Agency-funded Icy Mars Analogue Program. It is notable that the majority of previous studies in the Arctic and Antarctica, including our recent work on Devon Island, have focused on gullies formed on slopes generated by regular endogenic geological processes and in regular bedrock. How-ever, as noted above, meteorite impact craters are the most dominant setting for gullies on Mars. Impact craters provide an environment with diverse lithologies including impact-generated and impact-modified rocks and slope angle, and thus greatly variable hill slope processes could occur within a localized area. Here, we investigate the formation of gullies within the Haughton impact structure and compare them to gullies formed in unimpacted target rock in the nearby Thomas Lee Inle
Comparing three short questionnaires to detect psychosocial dysfunction among primary school children: a randomized method
BACKGROUND: Good questionnaires are essential to support the early identification of children with psychosocial dysfunction in community based settings. Our aim was to assess which of three short questionnaires was most suitable for this identification among school-aged children METHODS: A community-based sample of 2,066 parents of children aged 7-12 years (85% of those eligible) filled out the Child Behavior Checklist (CBCL) and - randomly determined - one of three questionnaires to be compared: the Strengths and Difficulties Questionnaire with Impact Supplement (SDQ), the Pediatric Symptom Checklist (PSC) and the PSYBOBA, a Dutch-origin questionnaire. Preventive Child Healthcare professionals assessed children's psychosocial functioning during routine health examinations. We assessed the scale structure (by means of Structural Equation Modelling), validity (correlation coefficients, sensitivity and specificity) and usability (ratings by parents and professionals) of each questionnaire and the degree to which they could improve the identification based only on clinical assessment (logistic regression). RESULTS: For the three questionnaires, Cronbach's alphas varied between 0.80 and 0.89. Sensitivities for a clinical CBCL at a cut off point with specificity = 0.90 varied between 0.78 and 0.86 for the three questionnaires. Areas under the Receiver Operating Curve, using the CBCL as criterion, varied between 0.93 and 0.96. No differences were statistically significant. All three questionnaires added information to the clinical assessment. Odds ratios (95% confidence intervals) for added information were PSC: 29.3 (14.4-59.8), SDQ: 55.0 (23.1-131.2) and PSYBOBA: 68.5 (28.3-165.6). Parents preferred the SDQ and PSYBOBA. Preventive Child Health Care professionals preferred the SDQ. CONCLUSIONS: This randomized comparison of three questionnaires shows that each of the three questionnaires can improve the detection of psychosocial dysfunction among children substantially
Does the Boltzmann principle need a dynamical correction?
In an attempt to derive thermodynamics from classical mechanics, an
approximate expression for the equilibrium temperature of a finite system has
been derived [M. Bianucci, R. Mannella, B. J. West, and P. Grigolini, Phys.
Rev. E 51, 3002 (1995)] which differs from the one that follows from the
Boltzmann principle S = k log (Omega(E)) via the thermodynamic relation 1/T=
dS/dE by additional terms of "dynamical" character, which are argued to correct
and generalize the Boltzmann principle for small systems (here Omega(E) is the
area of the constant-energy surface). In the present work, the underlying
definition of temperature in the Fokker-Planck formalism of Bianucci et al. is
investigated and shown to coincide with an approximate form of the
equipartition temperature. Its exact form, however, is strictly related to the
"volume" entropy S = k log (Phi(E)) via the thermodynamic relation above for
systems of any number of degrees of freedom (Phi(E) is the phase space volume
enclosed by the constant-energy surface). This observation explains and
clarifies the numerical results of Bianucci et al. and shows that a dynamical
correction for either the temperature or the entropy is unnecessary, at least
within the class of systems considered by those authors. Explicit analytical
and numerical results for a particle coupled to a small chain (N~10) of quartic
oscillators are also provided to further illustrate these facts.Comment: REVTeX 4, 10 pages, 2 figures. Accepted to J. Stat. Phy
On the Temperature Dependence of the Lifetime of Thermally Isolated Metastable Clusters
The temperature dependence of the lifetime of the thermally isolated
metastable N8 cubane up to its decay into N2 molecules has been calculated by
the molecular dynamics method. It has been demonstrated that this dependence
significantly deviates from the Arrhenius law. The applicability of the finite
heat bath theory to the description of thermally isolated atomic clusters has
been proved using statistical analysis of the results obtained.Comment: 14 pages, 4 figure
Use of the Pediatric Symptom Checklist for the detection of psychosocial problems in preventive child healthcare
BACKGROUND: Early detection and treatment of psychosocial problems by preventive child healthcare may lead to considerable health benefits, and a short questionnaire could support this aim. The aim of this study was to assess whether the Dutch version of the US Pediatric Symptom checklist (PSC) is valid and suitable for the early detection of psychosocial problems among children. METHODS: We included 687 children (response 84.3%) aged 7–12 undergoing routine health assessments in nine Preventive Child Health Services across the Netherlands. Child health professionals interviewed and examined children and parents. Before the interview, parents completed an authorised Dutch translation of the PSC and the Child Behavior Checklist (CBCL). The CBCL and data on the child's current treatment status were used as criteria for the validity of the PSC. RESULTS: The consistency of the Dutch PSC was good (Cronbach alpha 0.89). The area under the ROC curve using the CBCL as a criterion was 0.94 (95% confidence interval 0.92 to 0.96). At the US cut-off (28 and above), the prevalence rate of an increased score and sensitivity were lower than in the USA. At a lower cut-off (22 and above), sensitivity and specificity were similar to that of the US version (71.7% and 93.0% respectively). Information on the PSC also helped in the identification of children with elevated CBCL Total Problems Scores, above solely clinical judgment. CONCLUSION: The PSC is also useful for the early detection of psychosocial problems in preventive child healthcare outside the USA, especially with an adjusted cut-off
Stability of C20 fullerene chains
The stability of (C20)N chains with N = 3 - 7 is analyzed by numerical
simulation using a tight-binding potential and molecular dynamics. Various
channels of losing the cluster-chain structure of the (C20)N complexes are
observed, including the decay of C20 clusters, their coalescence, and the
separation of one C20 fullerene from the chain.Comment: To appear in JETP Letter
Classification of phase transitions in small systems
We present a classification scheme for phase transitions in finite systems
like atomic and molecular clusters based on the Lee-Yang zeros in the complex
temperature plane. In the limit of infinite particle numbers the scheme reduces
to the Ehrenfest definition of phase transitions and gives the right critical
indices. We apply this classification scheme to Bose-Einstein condensates in a
harmonic trap as an example of a higher order phase transitions in a finite
system and to small Ar clusters.Comment: 12 pages, 4 figures, accepted for publication in Phys. Rev. Let
Excitation and relaxation in atom-cluster collisions
Electronic and vibrational degrees of freedom in atom-cluster collisions are
treated simultaneously and self-consistently by combining time-dependent
density functional theory with classical molecular dynamics. The gradual change
of the excitation mechanisms (electronic and vibrational) as well as the
related relaxation phenomena (phase transitions and fragmentation) are studied
in a common framework as a function of the impact energy (eV...MeV). Cluster
"transparency" characterized by practically undisturbed atom-cluster
penetration is predicted to be an important reaction mechanism within a
particular window of impact energies.Comment: RevTeX (4 pages, 4 figures included with epsf
- …