9 research outputs found

    Concomitant aberrant methylation of p15 and MGMT genes in acute myeloid leukemia: association with a particular immunophenotype of blast cells

    No full text
    In this study, methylation-specific polymerase chain reaction (MS-PCR) was used to define the methylation status of the target promoter sequences of p15 and MGMT genes in the group of 21 adult patients with acute myeloid leukemia (AML). The incidence of aberrant hypermethylation of p15 gene (71 %) was higher comparing to MGMT gene (33 %), whereas concomitant methylation of both genes had 24 % of the patients. Although the incidence of cytogenetic abnormalities between the groups with a different methylation status of p15 and/or MGMT genes was not significantly different, we observed general trend of clustering of abnormalities with adverse prognosis into groups with concomitant hypermethylation of both genes and only p15 gene. Also, we showed that AML patients with concomitant methylation of p15/MGMT genes had a higher proportion of leukemic blast cells characterized with specific expression of individual leukocyte surface antigens (CD117(+)/CD7(+)/CD34(+)/CD15(-)), indicating leukemic cells as early myeloid progenitors. Although we could not prove that hypermethylation of p15 and/or MGMT genes is predictive parameter for response to therapy and overall survival, we noticed that AML patients with comethylated p15/MGMT genes or methylated p15 gene exhibited a higher frequency of early death, lower frequency of complete remissions as well as a trend for shorter overall survival. Assessing of the methylation status of p15 and MGMT genes may allow stratification of patients with AML into distinct groups with potentially different prognosis

    A series of three cases of severe Clostridium difficile infection in Australia associated with a binary toxin producing clade 2 ribotype 251 strain

    No full text
    Three patients with severe Clostridium difficile infection (CDI) caused by an unusual strain of C. difficile, PCR ribotype (RT) 251, were identified in New South Wales, Australia. All cases presented with severe diarrhoea, two had multiple recurrences and one died following a colectomy. C. difficile RT251 strains were isolated by toxigenic culture. Genetic characterisation was performed using techniques including toxin gene profiling, PCR ribotyping, whole genome sequencing (WGS), in-silico multi-locus-sequence-typing (MLST) and core-genome single nucleotide variant (SNV) analyses. Antimicrobial susceptibility was determined using an agar incorporation method. In vitro toxin production was confirmed by Vero cell cytotoxicity assay and pathogenicity was assessed in a murine model of CDI. All RT251 isolates contained toxin A (tcdA), toxin B (tcdB) and binary toxin (cdtA and cdtB) genes. Core-genome analyses revealed the RT251 strains were clonal, with 0–5 SNVs between isolates. WGS and MLST clustered RT251 in the same evolutionary clade (clade 2) as RT027. Despite comparatively lower levels of in vitro toxin production, in the murine model RT251 infection resembled RT027 infection. Mice showed marked weight loss, severe disease within 48 h post-infection and death. All isolates were susceptible to metronidazole and vancomycin. Our observations suggest C. difficile RT251 causes severe disease and emphasise the importance of ongoing surveillance for new and emerging strains of C. difficile with enhanced virulence
    corecore