63 research outputs found

    Modifications to the Aesop's fable paradigm change New Caledonian crow performances

    Get PDF
    While humans are able to understand much about causality, it is unclear to what extent non-human animals can do the same. The Aesop's Fable paradigm requires an animal to drop stones into a water-filled tube to bring a floating food reward within reach. Rook, Eurasian jay, and New Caledonian crow performances are similar to those of children under seven years of age when solving this task. However, we know very little about the cognition underpinning these birds' performances. Here, we address several limitations of previous Aesop's Fable studies to gain insight into the causal cognition of New Caledonian crows. Our results provide the first evidence that any non-human animal can solve the U-tube task and can discriminate between water-filled tubes of different volumes. However, our results do not provide support for the hypothesis that these crows can infer the presence of a hidden causal mechanism. They also call into question previous object-discrimination performances. The methodologies outlined here should allow for more powerful comparisons between humans and other animal species and thus help us to determine which aspects of causal cognition are distinct to humans

    Using the Aesop's fable paradigm to investigate causal understanding of water displacement by New Caledonian crows.

    Get PDF
    Understanding causal regularities in the world is a key feature of human cognition. However, the extent to which non-human animals are capable of causal understanding is not well understood. Here, we used the Aesop's fable paradigm--in which subjects drop stones into water to raise the water level and obtain an out of reach reward--to assess New Caledonian crows' causal understanding of water displacement. We found that crows preferentially dropped stones into a water-filled tube instead of a sand-filled tube; they dropped sinking objects rather than floating objects; solid objects rather than hollow objects, and they dropped objects into a tube with a high water level rather than a low one. However, they failed two more challenging tasks which required them to attend to the width of the tube, and to counter-intuitive causal cues in a U-shaped apparatus. Our results indicate that New Caledonian crows possess a sophisticated, but incomplete, understanding of the causal properties of displacement, rivalling that of 5-7 year old children

    Decision-making flexibility in New Caledonian crows, young children and adult humans in a multi-dimensional tool-use task

    No full text
    The ability to make profitable decisions in natural foraging contexts may be influenced by an additional requirement of tool-use, due to increased levels of relational complexity and additional work-effort imposed by tool-use, compared with simply choosing between an immediate and delayed food item. We examined the flexibility for making the most profitable decisions in a multi-dimensional tool-use task, involving different apparatuses, tools and rewards of varying quality, in 3-5-year-old children, adult humans and tool-making New Caledonian crows (Corvus moneduloides). We also compared our results to previous studies on habitually tool-making orangutans (Pongo abelii) and non-tool-making Goffin’s cockatoos (Cacatua goffiniana). Adult humans, cockatoos and crows, but not children and orangutans, did not select a tool when it was not necessary, which was the more profitable choice in this situation. Adult humans, orangutans and cockatoos, but not crows and children, were able to refrain from selecting non-functional tools. By contrast, the birds, but not the primates tested, struggled to attend to multiple variables—where two apparatuses, two tools and two reward qualities were presented simultaneously—without extended experience. These findings indicate: (1) in a similar manner to humans and orangutans, New Caledonian crows and Goffin’s cockatoos can flexibly make profitable decisions in some decision-making tool-use tasks, though the birds may struggle when tasks become more complex; (2) children and orangutans may have a bias to use tools in situations where adults and other tool-making species do not. © 2020 Miller et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Beyond brain size: Uncovering the neural correlates of behavioral and cognitive specialization

    Get PDF
    © Comparative Cognition Society. Despite prolonged interest in comparing brain size and behavioral proxies of "intelligence" across taxa, the adaptive and cognitive significance of brain size variation remains elusive. Central to this problem is the continued focus on hominid cognition as a benchmark and the assumption that behavioral complexity has a simple relationship with brain size. Although comparative studies of brain size have been criticized for not reflecting how evolution actually operates, and for producing spurious, inconsistent results, the causes of these limitations have received little discussion. We show how these issues arise from implicit assumptions about what brain size measures and how it correlates with behavioral and cognitive traits. We explore how inconsistencies can arise through heterogeneity in evolutionary trajectories and selection pressures on neuroanatomy or neurophysiology across taxa. We examine how interference from ecological and life history variables complicates interpretations of brain-behavior correlations and point out how this problem is exacerbated by the limitations of brain and cognitive measures. These considerations, and the diversity of brain morphologies and behavioral capacities, suggest that comparative brain-behavior research can make greater progress by focusing on specific neuroanatomical and behavioral traits within relevant ecological and evolutionary contexts. We suggest that a synergistic combination of the "bottom-up" approach of classical neuroethology and the "top-down" approach of comparative biology/psychology within closely related but behaviorally diverse clades can limit the effects of heterogeneity, interference, and noise. We argue that this shift away from broad-scale analyses of superficial phenotypes will provide deeper, more robust insights into brain evolution

    Ingredients for understanding brain and behavioral evolution: Ecology, phylogeny, and mechanism

    Get PDF
    This is the final version of the article. Available from The Comparative Cognition Society via the DOI in this record.Uncovering the neural correlates and evolutionary drivers of behavioral and cognitive traits has been held back by traditional perspectives on which correlations to look for-in particular, anthropocentric conceptions of cognition and coarse-grained brain measurements. We welcome our colleagues' comments on our overview of the field and their suggestions for how to move forward. Here, we counter, clarify, and extend some points, focusing on the merits of looking for the "best" predictor of cognitive ability, the sources and meaning of "noise," and the ways in which we can deduce and test meaningful conclusions from comparative analyses of complex traits

    Decision-making flexibility in New Caledonian crows, young children and adult humans in a multi-dimensional tool-use task.

    Get PDF
    The ability to make profitable decisions in natural foraging contexts may be influenced by an additional requirement of tool-use, due to increased levels of relational complexity and additional work-effort imposed by tool-use, compared with simply choosing between an immediate and delayed food item. We examined the flexibility for making the most profitable decisions in a multi-dimensional tool-use task, involving different apparatuses, tools and rewards of varying quality, in 3-5-year-old children, adult humans and tool-making New Caledonian crows (Corvus moneduloides). We also compared our results to previous studies on habitually tool-making orangutans (Pongo abelii) and non-tool-making Goffin's cockatoos (Cacatua goffiniana). Adult humans, cockatoos and crows, but not children and orangutans, did not select a tool when it was not necessary, which was the more profitable choice in this situation. Adult humans, orangutans and cockatoos, but not crows and children, were able to refrain from selecting non-functional tools. By contrast, the birds, but not the primates tested, struggled to attend to multiple variables-where two apparatuses, two tools and two reward qualities were presented simultaneously-without extended experience. These findings indicate: (1) in a similar manner to humans and orangutans, New Caledonian crows and Goffin's cockatoos can flexibly make profitable decisions in some decision-making tool-use tasks, though the birds may struggle when tasks become more complex; (2) children and orangutans may have a bias to use tools in situations where adults and other tool-making species do not

    Low-temperature ferroelectric phase and magnetoelectric coupling in the underdoped La_2CuO_(4+x)

    Full text link
    We report the discovery of a ferroelectric ground state below 4.5 K in highly underdoped La_2CuO_(4+x) accompanied by slow charge dynamics which develop below T~40 K. An anisotropic magnetoelectric response has also been observed, indicating considerable spin-charge coupling in this lightly doped "parent" high temperature copper-oxide superconductor. The ferroelectric state is proposed to develop from polar nanoregions, in which spatial inversion symmetry is locally broken due to non-stoichiometric carrier doping.Comment: 7 Pages, 6 Figures, supplementary materia

    Self‐control in crows, parrots and nonhuman primates

    Get PDF
    Self‐control is critical for both humans and nonhuman animals because it underlies complex cognitive abilities, such as decision‐making and future planning, enabling goal‐directed behavior. For instance, it is positively associated with social competence and life success measures in humans. We present the first review of delay of gratification as a measure of self‐control in nonhuman primates, corvids (crow family) and psittacines (parrot order): disparate groups that show comparable advanced cognitive abilities and similar socio‐ecological factors. We compare delay of gratification performance and identify key issues and outstanding areas for future research, including finding the best measures and drivers of delayed gratification. Our review therefore contributes to our understanding of both delayed gratification as a measure of self‐control and of complex cognition in animals

    Performance in Object-Choice Aesop's Fable Tasks Are Influenced by Object Biases in New Caledonian Crows but not in Human Children

    Get PDF
    The ability to reason about causality underlies key aspects of human cognition, but the extent to which non-humans understand causality is still largely unknown. The Aesop's Fable paradigm, where objects are inserted into water-filled tubes to obtain out-of-reach rewards, has been used to test casual reasoning in birds and children. However, success on these tasks may be influenced by other factors, specifically, object preferences present prior to testing or arising during pre-test stone-dropping training. Here, we assessed this 'object-bias' hypothesis by giving New Caledonian crows and 5-10 year old children two object-choice Aesop's Fable experiments: sinking vs. floating objects, and solid vs. hollow objects. Before each test, we assessed subjects' object preferences and/or trained them to prefer the alternative object. Both crows and children showed pre-test object preferences, suggesting that birds in previous Aesop's Fable studies may also have had initial preferences for objects that proved to be functional on test. After training to prefer the non-functional object, crows, but not children, performed more poorly on these two object-choice Aesop's Fable tasks than subjects in previous studies. Crows dropped the non-functional objects into the tube on their first trials, indicating that, unlike many children, they do not appear to have an a priori understanding of water displacement. Alternatively, issues with inhibition could explain their performance. The crows did, however, learn to solve the tasks over time. We tested crows further to determine whether their eventual success was based on learning about the functional properties of the objects, or associating dropping the functional object with reward. Crows inserted significantly more rewarded, non-functional objects than non-rewarded, functional objects. These findings suggest that the ability of New Caledonian crows to produce performances rivaling those of young children on object-choice Aesop's Fable tasks is partly due to pre-existing object preferences.This research was funded by the European Research Council under the European Union's Seventh Framewor k Programme (FP7/ 2007-2013)/ERC Grant Agreement No. 3399933, awarded to NSC (funding RM, SAJ, EL & NSC). AHT was funded by a Rutherford Discovery Fellowship from the Royal Society of New Zealand
    • 

    corecore