2,219 research outputs found
Development of a laser Doppler system for the detection and monitoring of atmospheric disturbances
A Scanning Laser Doppler Velocimeter System (SLDVS) capable of detecting and monitoring atmospheric disturbances, including wake vortices of landing aircraft and vertical wind profiles in the atmosphere was developed. The SLDVS is a focused, continuous wave, CO2 system that determines the line-of-sight velocities of particles in the focal volume by measuring the Doppler shift created by these particles. At present, the SLDVS is designed to have a range coverage of approximately 2000 ft with a vertical angle coverage of approximately 60 deg. It is also designed to detect Doppler velocities of up to 200 ft/sec with a velocity resolution of approximately 1.8 ft/sec. A complete velocity spectrum is provided by the SLDVS at each point in space at which it is focused. The overall operation and performance of the system and the description of its individual components and data handling capabilities were given
Laser Doppler technology applied to atmospheric environmental operating problems
Carbon dioxide laser Doppler ground wind data were very favorably compared with data from standard anemometers. As a result of these measurements, two breadboard systems were developed for taking research data: a continuous wave velocimeter and a pulsed Doppler system. The scanning continuous wave laser Doppler velocimeter developed for detecting, tracking and measuring aircraft wake vortices was successfully tested at an airport where it located vortices to an accuracy of 3 meters at a range of 150 meters. The airborne pulsed laser Doppler system was developed to detect and measure clear air turbulence (CAT). This system was tested aboard an aircraft, but jet stream CAT was not encountered. However, low altitude turbulence in cumulus clouds near a mountain range was detected by the system and encountered by the aircraft at the predicted time
Laser Doppler dust devil measurements
A scanning laser doppler velocimeter (SLDV) system was used to detect, track, and measure the velocity flow field of naturally occurring tornado-like flows (dust devils) in the atmosphere. A general description of the dust devil phenomenon is given along with a description of the test program, measurement system, and data processing techniques used to collect information on the dust devil flow field. The general meteorological conditions occurring during the test program are also described, and the information collected on two selected dust devils are discussed in detail to show the type of information which can be obtained with a SLDV system. The results from these measurements agree well with those of other investigators and illustrate the potential for the SLDV in future endeavors
A Wind Driven Warping Instability in Accretion Disks
A wind passing over a surface may cause an instability in the surface such as the flapping seen when wind blows across a flag or waves when wind blows across water. We show that when a radially outflowing wind blows across a dense thin rotating disk, an initially flat disk is unstable to warping. When the wind is subsonic, the growth rate is dependent on the lift generated by the wind and the phase lag between the pressure perturbation and the vertical displacement in the disk caused by drag. When the wind is supersonic, the grow rate is primarily dependent on the form drag caused by the surface. While the radiative warping instability proposed by Pringle is promising for generating warps near luminous accreting objects, we expect the wind driven instability introduced here would dominate in objects which generate energetic outflows
Application of Bayesian model averaging to measurements of the primordial power spectrum
Cosmological parameter uncertainties are often stated assuming a particular
model, neglecting the model uncertainty, even when Bayesian model selection is
unable to identify a conclusive best model. Bayesian model averaging is a
method for assessing parameter uncertainties in situations where there is also
uncertainty in the underlying model. We apply model averaging to the estimation
of the parameters associated with the primordial power spectra of curvature and
tensor perturbations. We use CosmoNest and MultiNest to compute the model
Evidences and posteriors, using cosmic microwave data from WMAP, ACBAR,
BOOMERanG and CBI, plus large-scale structure data from the SDSS DR7. We find
that the model-averaged 95% credible interval for the spectral index using all
of the data is 0.940 < n_s < 1.000, where n_s is specified at a pivot scale
0.015 Mpc^{-1}. For the tensors model averaging can tighten the credible upper
limit, depending on prior assumptions.Comment: 7 pages with 7 figures include
Tests of Bayesian Model Selection Techniques for Gravitational Wave Astronomy
The analysis of gravitational wave data involves many model selection
problems. The most important example is the detection problem of selecting
between the data being consistent with instrument noise alone, or instrument
noise and a gravitational wave signal. The analysis of data from ground based
gravitational wave detectors is mostly conducted using classical statistics,
and methods such as the Neyman-Pearson criteria are used for model selection.
Future space based detectors, such as the \emph{Laser Interferometer Space
Antenna} (LISA), are expected to produced rich data streams containing the
signals from many millions of sources. Determining the number of sources that
are resolvable, and the most appropriate description of each source poses a
challenging model selection problem that may best be addressed in a Bayesian
framework. An important class of LISA sources are the millions of low-mass
binary systems within our own galaxy, tens of thousands of which will be
detectable. Not only are the number of sources unknown, but so are the number
of parameters required to model the waveforms. For example, a significant
subset of the resolvable galactic binaries will exhibit orbital frequency
evolution, while a smaller number will have measurable eccentricity. In the
Bayesian approach to model selection one needs to compute the Bayes factor
between competing models. Here we explore various methods for computing Bayes
factors in the context of determining which galactic binaries have measurable
frequency evolution. The methods explored include a Reverse Jump Markov Chain
Monte Carlo (RJMCMC) algorithm, Savage-Dickie density ratios, the Schwarz-Bayes
Information Criterion (BIC), and the Laplace approximation to the model
evidence. We find good agreement between all of the approaches.Comment: 11 pages, 6 figure
Diffusive persistence and the `sign-time' distribution
We present a new method for extracting the persistence exponent theta for the
diffusion equation, based on the distribution P of `sign-times'. With the aid
of a numerically verified Ansatz for P we derive an exact formula for theta in
arbitrary spatial dimension d. Our results are in excellent agreement with
previous numerical studies. Furthermore, our results indicate a qualitative
change in P above d ~ 36, signalling the existence of a sharp change in the
ergodic properties of the diffusion field.Comment: 5 pages, 2 tar gzip figures (Latex), subm. to PRE (Rapid Comm), new
reference adde
Acceleration of the Universe driven by the Casimir force
We investigate an evolutional scenario of the FRW universe with the Casimir
energy scaling like . The Casimir effect is used to explain the
vacuum energy differences (its value measured from astrophysics is so small
compared to value obtained from quantum field theory calculations). The
dynamics of the FRW model is represented in terms of a two-dimensional
dynamical system to show all evolutional paths of this model in the phase space
for all admissible initial conditions. We find also an exact solution for non
flat evolutional paths of Universe driven by the Casimir effect. The main
difference between the FRW model with the Casimir force and the CDM
model is that their generic solutions are a set of evolutional paths with a
bounce solution and an initial singularity, respectively. The evolutional
scenario are tested by using the SNIa data, FRIIb radiogalaxies, baryon
oscillation peak and CMB observation. We compare the power of explanation of
the model considered and the CDM model using the Bayesian information
criterion and Bayesian factor. Our investigation of the information criteria of
model selection showed the preference of the CDM model over the model
considered. However the presence of negative like the radiation term can remove
a tension between the theoretical and observed primordial He and D
abundance.Comment: RevTeX4, 17 pages, 9 figure
On the Gravitational Collapse of a Gas Cloud in Presence of Bulk Viscosity
We analyze the effects induced by the bulk viscosity on the dynamics
associated to the extreme gravitational collapse. Aim of the work is to
investigate whether the presence of viscous corrections to the evolution of a
collapsing gas cloud influence the fragmentation process. To this end we study
the dynamics of a uniform and spherically symmetric cloud with corrections due
to the negative pressure contribution associated to the bulk viscosity
phenomenology. Within the framework of a Newtonian approach (whose range of
validity is outlined), we extend to the viscous case either the Lagrangian,
either the Eulerian motion of the system and we treat the asymptotic evolution
in correspondence to a viscosity coefficient of the form ( being the cloud density and ). We show how,
in the adiabatic-like behavior of the gas (i.e. when the politropic index takes
values ), density contrasts acquire, asymptotically, a
vanishing behavior which prevents the formation of sub-structures. We can
conclude that in the adiabatic-like collapse the top down mechanism of
structures formation is suppressed as soon as enough strong viscous effects are
taken into account. Such a feature is not present in the isothermal-like (i.e.
) collapse because the sub-structures formation is yet present
and outlines the same behavior as in the non-viscous case. We emphasize that in
the adiabatic-like collapse the bulk viscosity is also responsible for the
appearance of a threshold scale beyond which perturbations begin to increase.Comment: 13 pages, no figur
Consistency of the Shannon entropy in quantum experiments
The consistency of the Shannon entropy, when applied to outcomes of quantum
experiments, is analysed. It is shown that the Shannon entropy is fully
consistent and its properties are never violated in quantum settings, but
attention must be paid to logical and experimental contexts. This last remark
is shown to apply regardless of the quantum or classical nature of the
experiments.Comment: 12 pages, LaTeX2e/REVTeX4. V5: slightly different than the published
versio
- …