The analysis of gravitational wave data involves many model selection
problems. The most important example is the detection problem of selecting
between the data being consistent with instrument noise alone, or instrument
noise and a gravitational wave signal. The analysis of data from ground based
gravitational wave detectors is mostly conducted using classical statistics,
and methods such as the Neyman-Pearson criteria are used for model selection.
Future space based detectors, such as the \emph{Laser Interferometer Space
Antenna} (LISA), are expected to produced rich data streams containing the
signals from many millions of sources. Determining the number of sources that
are resolvable, and the most appropriate description of each source poses a
challenging model selection problem that may best be addressed in a Bayesian
framework. An important class of LISA sources are the millions of low-mass
binary systems within our own galaxy, tens of thousands of which will be
detectable. Not only are the number of sources unknown, but so are the number
of parameters required to model the waveforms. For example, a significant
subset of the resolvable galactic binaries will exhibit orbital frequency
evolution, while a smaller number will have measurable eccentricity. In the
Bayesian approach to model selection one needs to compute the Bayes factor
between competing models. Here we explore various methods for computing Bayes
factors in the context of determining which galactic binaries have measurable
frequency evolution. The methods explored include a Reverse Jump Markov Chain
Monte Carlo (RJMCMC) algorithm, Savage-Dickie density ratios, the Schwarz-Bayes
Information Criterion (BIC), and the Laplace approximation to the model
evidence. We find good agreement between all of the approaches.Comment: 11 pages, 6 figure