107 research outputs found

    Appetite and energy balancing

    Get PDF
    AbstractThe idea that food intake is motivated by (or in anticipation of) ‘hunger’ arising from energy depletion is apparent in both public and scientific discourse on eating behaviour. In contrast, our thesis is that eating is largely unrelated to short-term energy depletion. Energy requirements meal-to-meal are trivial compared with total body energy stores, and energy supply to the body's tissues is maintained if a meal or even several meals are missed. Complex and exquisite metabolic machinery ensures that this happens, but metabolic regulation is only loosely coupled with the control of energy intake. Instead, food intake needs to be controlled because the limited capacity of the gut means that processing a meal presents a significant physiological challenge and potentially hinders other activities. We illustrate the relationship between energy (food) intake and energy expenditure with a simple analogy in which: (1) water in a bathtub represents body energy content, (2) water in a saucepan represents food in the gut, and (3) the bathtub is filled via the saucepan. Furthermore, (4) it takes hours to process and pass the full energy (macronutrient) content of the saucepan to the bathtub, and (5) both the saucepan and bathtub resist filling, representing negative feedbacks on appetite (desire to eat). This model is consistent with the observations that appetite is reduced acutely by energy intake (a meal added to the limited capacity of the saucepan/gut), but not increased by an acute increase in energy expenditure (energy removed from the large store of energy in the bathtub/body). The existence of relatively very weak but chronic negative feedback on appetite proportional to body fatness is supported by observations on the dynamics of energy intake and weight gain in rat dietary obesity. (We use the term ‘appetite’ here because ‘hunger’ implies energy depletion.) In our model, appetite is motivated by the accessibility of food and the anticipated and experienced pleasure of eating it. The latter, which is similar to food reward, is determined primarily by the state of emptiness of the gut and food liking related to the food's sensory qualities and macronutrient value and the individual's dietary history. Importantly, energy density adds value because energy dense foods are less satiating kJ for kJ and satiation limits further intake. That is, energy dense foods promote energy intake by virtue (1) of being more attractive and (2) having low satiating capacity kJ for kJ, and (1) is partly a consequence of (2). Energy storage is adapted to feast and famine and that includes unevenness over time of the costs of obtaining and ingesting food compared with engaging in other activities. However, in very low-cost food environments with energy dense foods readily available, risk of obesity is high. This risk can be and is mitigated by dietary restraint, which in its simplest form could mean missing the occasional meal. Another strategy we discuss is the energy dilution achieved by replacing some sugar in the diet with low-calorie sweeteners. Perhaps as or more significant, though, is that belief in short-term energy balancing (the energy depletion model) may undermine attempts to eat less. Therefore, correcting narratives of eating to be consistent with biological reality could also assist with weight control

    Effects of repeated consumption on sensory-enhanced satiety

    Get PDF
    Previous research suggests that sensory characteristics of a drink modify the acute satiating effects of its nutrients, with enhanced satiety evident when a high energy drink was thicker and tasted creamier. The present study tested whether this modulation of satiety by sensory context was altered by repeated consumption. Participants (n=48) consumed one of four drinks mid-morning on seven non-consecutive days with satiety responses measured pre-exposure (day 1), post-exposure (day 6) and at a one month follow-up. Drinks combined two levels of energy (lower energy, LE, 326 KJ: higher energy, HE, 1163KJ) with two levels of satiety-predictive sensory characteristics (low-sensory, LS, or enhanced sensory, ES). Test lunch intake 90 minutes after drink consumption depended on both the energy content and sensory characteristics of the drink before exposure, but on energy content alone at post-exposure and the follow-up. The largest change was an increase in test meal intake over time in the LE/LS condition. Effects on intake were reflected in appetite ratings, with rated hunger and expected filling affected by sensory characteristics and energy content pre-exposure, but were largely determined by energy content post exposure and at follow up. In contrast, a measure of expected satiety reflected sensory characteristics regardless of energy content on all three test days. Overall these data suggest that some aspects of the sensory-modulation of satiety are changed by repeated consumption, with covert energy becoming more effective in suppressing appetite over time, but also suggest that these behavioural changes are not readily translated into expectations of satiety

    Influence of BMI and dietary restraint on self-selected portions of prepared meals in US women

    Get PDF
    The rise of obesity prevalence has been attributed in part to an increase in food and beverage portion sizes selected and consumed among overweight and obese consumers. Nevertheless, evidence from observations of adults is mixed and contradictory findings might reflect the use of small or unrepresentative samples. The objective of this study was i) to determine the extent to which BMI and dietary restraint predict self-selected portion sizes for a range of commercially available prepared savoury meals and ii) to consider the importance of these variables relative to two previously established predictors of portion selection, expected satiation and expected liking. A representative sample of female consumers (N = 300, range 18–55 years) evaluated 15 frozen savoury prepared meals. For each meal, participants rated their expected satiation and expected liking, and selected their ideal portion using a previously validated computer-based task. Dietary restraint was quantified using the Dutch Eating Behaviour Questionnaire (DEBQ-R). Hierarchical multiple regression was performed on self-selected portions with age, hunger level, and meal familiarity entered as control variables in the first step of the model, expected satiation and expected liking as predictor variables in the second step, and DEBQ-R and BMI as exploratory predictor variables in the third step. The second and third steps significantly explained variance in portion size selection (18% and 4%, respectively). Larger portion selections were significantly associated with lower dietary restraint and with lower expected satiation. There was a positive relationship between BMI and portion size selection (p = 0.06) and between expected liking and portion size selection (p = 0.06). Our discussion considers future research directions, the limited variance explained by our model, and the potential for portion size underreporting by overweight participants

    Portion Size Influences Intake in Samburu Kenyan People Not Exposed to the Western Obesogenic Environment

    Get PDF
    For people in the modernized food environment, external factors like food variety, palatability, and ubiquitous learned cues for food availability can overcome internal, homeostatic signals to promote excess intake. Portion size is one such external cue; people typically consume more when served more, often without awareness. Though susceptibility to external cues may be attributed to the modernized, cue-saturated environment, there is little research on people living outside that context, or with distinctly different food norms. We studied a sample of Samburu people in rural Kenya who maintain a traditional, semi-nomadic pastoralist lifestyle, eat a very limited diet, and face chronic food insecurity. Participants (12 male, 12 female, aged 20–74, mean BMI = 18.4) attended the study on two days and were provided in counterbalanced order an individual serving bowl containing 1.4 or 2.3 kg of a familiar bean and maize stew. Amount consumed was recorded along with post-meal questions in their dialect about their awareness of intake amount. Data were omitted from two participants who consumed the entire portion in a session. Even though the ‘smaller’ serving was a very large meal, participants consumed 40% more when given the larger serving, despite being unable to reliably identify which day they consumed more food. This result in the Samburu demonstrates the portion size effect is not a by-product of the modern food environment and may represent a more fundamental feature of human dietary psychology

    Effects of meal variety on expected satiation : evidence for a 'perceived volume' heuristic

    Get PDF
    Meal variety has been shown to increase energy intake in humans by an average of 29%. Historically, research exploring the mechanism underlying this effect has focused on physiological and psychological processes that terminate a meal (e.g., sensory-specific satiety). We sought to explore whether meal variety stimulates intake by influencing pre-meal planning. We know that individuals use prior experience with a food to estimate the extent to which it will deliver fullness. These ‘expected satiation’ judgments may be straightforward when only one meal component needs to be considered, but it remains unclear how prospective satiation is estimated when a meal comprises multiple items. We hypothesised that people simplify the task by using a heuristic, or ‘cognitive shortcut.’ Specifically, as within-meal variety increases, expected satiation tends to be based on the perceived volume of food(s) rather than on prior experience. In each trial, participants (N = 68) were shown a plate of food with six buffet food items. Across trials the number of different foods varied in the range one to six. In separate tasks, the participants provided an estimate of their combined expected satiation and volume. When meal variety was high, judgments of perceived volume and expected satiation ‘converged.’ This is consistent with a common underlying response strategy. By contrast, the low variety meals produced dissociable responses, suggesting that judgments of expected satiation were not governed solely by perceived volume. This evidence for a ‘volume heuristic’ was especially clear in people who were less familiar with the meal items. Together, these results are important because they expose a novel process by which meal variety might increase food intake in humans

    Individual variability in preference for energy-dense foods fails to predict child BMI percentile

    Get PDF
    Many studies show that higher dietary energy density is associated with greater body weight. Here we explored two propositions: i) that child BMI percentile is associated with individual differences in children's relative preference for energy-dense foods, ii) that child BMI percentile is associated with the same individual differences between their parents. Child-parent dyads were recruited from a local interactive science center in Bristol (UK). Using computerized tasks, participants ranked their preference and rated their liking for a range of snack foods that varied in energy density. Children (aged 3–14 years, N = 110) and parents completed the tasks for themselves. Parents also completed two further tasks in which they ranked the foods in the order that they would prioritize for their child, and again, in the order that they thought their child would choose. Children preferred (t(109) = 3.91, p ≺ 0.001) and better liked the taste of (t(109) = 3.28, p = 0.001) higher energy-dense foods, and parents correctly estimated this outcome (t(109) = 7.18, p ≺ 0.001). Conversely, lower energy-dense foods were preferred (t(109) = − 4.63, p ≺ 0.001), better liked (t(109) = − 2.75, p = 0.007) and served (t(109) = − 15.06, p ≺ 0.001) by parents. However, we found no evidence that child BMI percentile was associated with child or parent preference for, or liking of, energy-dense foods. Therefore, we suggest that the observed relationship between dietary energy density and body weight is not explained by individual differences in preference for energy density
    • …
    corecore