5,476 research outputs found

    ArterioVenous Malformation within Jejunal Diverticulum: An Unusual Cause of Massive Gastrointestinal Bleeding

    Get PDF
    Massive gastrointestinal (GI) bleeding can occur with multiple jejunal diverticulosis. However, significant bleeding in the setting of few diverticulae is very unusual and rare. We report a case of massive gastrointestinal bleeding from an arteriovenous malformation (AVM) within a jejunal diverticulum to underscore the significance of such coexisting pathologies. Mesenteric angiogram was chosen to help identify the source of bleeding and to offer an intervention. Despite endovascular coiling, emergent intestinal resection of the bleeding jejunal segment was warranted to ensure definitive treatment. However several reports have shown jejunal diverticulosis as a rare cause of massive GI bleeding. The coexistence of jejunal diverticulum and AVM is rare and massive bleeding from an acquired Dieulafoy-like AVM within a diverticulum has never previously been described. Awareness of Dieulafoy-like AVM within jejunoileal diverticulosis is useful in preventing delay in treatment

    Comparison Of Sorghum And Indiangrass Chloroplast Genomes Using RFLPs

    Get PDF
    Sorghum (Sorghum bicolor (L.) Moench) and indiangrass (Sorghastrum nutans (L.) Nash) appear closely related based on morphological and chemotaxonomic characters. Each species could potentially provide desirable traits to the other. However, traditional breeding techniques have been unsuccessful in hybridizing these two species. The objective of this study was to determine the relatedness of sorghum and indiangrass chloroplast DNA using RFLPs. Eleven sorghum lines in several cytoplasms, two indiangrass popu1ations, and a corn line were studied using 60 proberestriction enzyme combinations. Principal component analysis of the results showed sorghum to be as closely related to corn as to indiangrass, with no overlap of clusters among the three groups

    Variability in antifungal and antiviral use in hospitalized children

    Get PDF
    We analyzed antifungal and antiviral prescribing among high-risk children across freestanding children’s hospitals. Antifungal and antiviral days of therapy varied across hospitals. Benchmarking antifungal and antiviral use and developing antimicrobial stewardship strategies to optimize use of these high cost agents is needed.Infect Control Hosp Epidemiol2017;38:743–746</jats:p

    Plate boundary trench retreat and dextral shear drive intracontinental fault-slip histories: Neogene dextral faulting across the Gabbs Valley and Gillis Ranges, Central Walker Lane, Nevada

    Get PDF
    The spatial-temporal evolution of intracontinental faults and the forces that drive their style, orientation, and timing are central to understanding tectonic processes. Intracontinental NW-striking dextral faults in the Gabbs Valley–Gillis Ranges (hereafter referred to as the GVGR), Nevada, define a structural domain known as the eastern Central Walker Lane located east of the western margin of the North American plate. To consider how changes in boundary type along the western margin of the North American plate influenced both the initiation and continued dextral fault slip to the present day in the GVGR, we combine our new detailed geologic mapping, structural studies, and 40Ar/39Ar geochronology with published geologic maps to calculate early to middle Miocene dextral fault-slip rates. In the GVGR, Mesozoic basement is nonconformably overlain by a late Oligocene to Miocene sequence dominated by tuffs, lavas, and sedimentary rocks. These rocks are cut and offset by four primary NW-striking dextral faults, from east to west the Petrified Spring, Benton Spring, Gumdrop Hills, and Agai Pah Hills–Indian Head faults. A range of geologic markers, including tuff- and lava-filled paleovalleys, the southern extent of lava flows, and a normal fault, show average dextral offset magnitudes of 9.6 ± 1.1 km, 7.0 ± 1.7 km, 9.7 ± 1.0 km, and 4.9 ± 1.1 km across the four faults, respectively. Cumulative dextral offset across the GVGR is 31.2 ± 2.3 km. Initiation of slip along the Petrified Spring fault is tightly bracketed between 15.99 ± 0.05 Ma and 15.71 ± 0.03 Ma, whereas slip along the other faults initiated after 24.30 ± 0.05 Ma to 20.14 ± 0.26 Ma. Assuming that slip along all four faults initiated at the same time as the Petrified Spring fault yields calculated dextral fault-slip rates of 0.4 ± 0.1–0.6 ± 0.1 mm/yr, 0.4 ± 0.1–0.5 ± 0.1 mm/yr, 0.6 ± 0.1 mm/yr, and 0.3 ± 0.1 mm/yr on the four faults, respectively. Middle Miocene initiation of dextral fault slip across the GVGR overlaps with the onset of normal slip along range-bounding faults in the western Basin and Range to the north and the northern Eastern California shear zone to the south. Based on this spatial-temporal relationship, we propose that dextral fault slip across the GVGR defines a kinematic link or accommodation zone between the two regions of extension. At the time of initiation of dextral slip across the GVGR, the plate-boundary setting to the west was characterized by subduction of the Farallon plate beneath the North American plate. To account for the middle Miocene onset of extension across the Basin and Range and dextral slip in the GVGR, we hypothesize that middle Miocene trench retreat drove westward motion of the Sierra Nevada and behind it, crustal extension across the Basin and Range and NW-dextral shear within the GVGR. During the Pliocene, the plate boundary to the west changed to NW-dextral shear between the Pacific and North American plates, which drove continued dextral slip along the same faults within the GVGR because they were fortuitously aligned subparallel to plate boundary motion

    Antibody-Based Ticagrelor Reversal Agent in Healthy Volunteers.

    Get PDF
    BACKGROUND: Ticagrelor is an oral P2Y12 inhibitor that is used with aspirin to reduce the risk of ischemic events among patients with acute coronary syndromes or previous myocardial infarction. Spontaneous major bleeding and bleeding associated with urgent invasive procedures are concerns with ticagrelor, as with other antiplatelet drugs. The antiplatelet effects of ticagrelor cannot be reversed with platelet transfusion. A rapid-acting reversal agent would be useful. METHODS: In this randomized, double-blind, placebo-controlled, phase 1 trial, we evaluated intravenous PB2452, a monoclonal antibody fragment that binds ticagrelor with high affinity, as a ticagrelor reversal agent. We assessed platelet function in healthy volunteers before and after 48 hours of ticagrelor pretreatment and again after the administration of PB2452 or placebo. Platelet function was assessed with the use of light transmission aggregometry, a point-of-care P2Y12 platelet-reactivity test, and a vasodilator-stimulated phosphoprotein assay. RESULTS: Of the 64 volunteers who underwent randomization, 48 were assigned to receive PB2452 and 16 to receive placebo. After 48 hours of ticagrelor pretreatment, platelet aggregation was suppressed by approximately 80%. PB2452 administered as an initial intravenous bolus followed by a prolonged infusion (8, 12, or 16 hours) was associated with a significantly greater increase in platelet function than placebo, as measured by multiple assays. Ticagrelor reversal occurred within 5 minutes after the initiation of PB2452 and was sustained for more than 20 hours (P\u3c0.001 after Bonferroni adjustment across all time points for all assays). There was no evidence of a rebound in platelet activity after drug cessation. Adverse events related to the trial drug were limited mainly to issues involving the infusion site. CONCLUSIONS: In healthy volunteers, the administration of PB2452, a specific reversal agent for ticagrelor, provided immediate and sustained reversal of the antiplatelet effects of ticagrelor, as measured by multiple assays. (Funded by PhaseBio Pharmaceuticals; ClinicalTrials.gov number, NCT03492385.)

    Use of 3D rotational angiography to perform computational fluid dynamics and virtual interventions in aortic coarctation

    Full text link
    Computational fluid dynamics (CFD) can be used to analyze blood flow and to predict hemodynamic outcomes after interventions for coarctation of the aorta and other cardiovascular diseases. We report the first use of cardiac 3‐dimensional rotational angiography for CFD and show not only feasibility but also validation of its hemodynamic computations with catheter‐based measurements in three patients.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154333/1/ccd28507.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154333/2/ccd28507_am.pd
    corecore