34 research outputs found
Balancing renewable energy and river resources by moving from individual assessments of hydropower projects to energy system planning
As governments and non-state actors strive to minimize global warming, a primary strategy is the decarbonization of power systems which will require a massive increase in renewable electricity generation. Leading energy agencies forecast a doubling of global hydropower capacity as part of that necessary expansion of renewables. While hydropower provides generally low-carbon generation and can integrate variable renewables, such as wind and solar, into electrical grids, hydropower dams are one of the primary reasons that only one-third of the worldâs major rivers remain free-flowing. This loss of free-flowing rivers has contributed to dramatic declines of migratory fish and sediment delivery to agriculturally productive deltas. Further, the reservoirs behind dams have displaced tens of millions of people. Thus, hydropower challenges the worldâs efforts to meet climate targets while simultaneously achieving other Sustainable Development Goals. In this paper, we explore strategies to achieve the needed renewable energy expansion while sustaining the diverse social and environmental benefits of rivers. These strategies can be implemented at scales ranging from the individual project (environmental flows, fish passage and other site-level mitigation) to hydropower cascades to river basins and regional electrical power systems. While we review evidence that project-level management and mitigation can reduce environmental and social costs, we posit that the most effective scale for finding balanced solutions occurs at the scale of power systems. We further hypothesize that the pursuit of solutions at the system scale can also provide benefits for investors, developers and governments; evidence of benefits to these actors will be necessary for achieving broad uptake of the approaches described in this paper. We test this hypothesis through cases from Chile and Uganda that demonstrate the potential for system-scale power planning to allow countries to meet low-carbon energy targets with power systems that avoid damming high priority rivers (e.g., those that would cause conflicts with other social and environmental benefits) for a similar system cost as status quo approaches. We also show that, through reduction of risk and potential conflict, strategic planning of hydropower site selection can improve financial performance for investors and developers, with a case study from Colombia
Managing the Three Gorges Dam to Implement Environmental Flows in the Yangtze River
The construction of the Three Gorges Dam, along with other development in the Yangtze River basin, has had profound consequences for the river's flow and sediment regime. This has had major impacts on the geomorphology and ecology of the river downstream of the dam, with related impacts on biodiversity, including fish populations, livelihoods, and water security in the middle and lower Yangtze. Changes to fish populations have included a fall of around 90% in the total number of fish fry for the four economically-important Chinese carp species, caused at least in part by alterations in the flow regime. In response, there has been increased research into the significance of flow regimes for Chinese carp, as well as other aspects of river health. A partnership between the Chinese Government, the dam operator, scientists, and conservationists has led to pilot environmental flow releases over a 5-year period in an attempt to mitigate some of these impacts. Subsequent monitoring has shown that numbers of fish fry are increasing from the low they had fallen to in 2008. Drawing on lessons from the pilot environmental flow releases, in October 2015 the official regulations that govern operations of the Three Gorges Dam were amended to incorporate additional objectives, including incorporating environmental flow releases as part of the routine operation of the dam. This paper describes the processes that led to the environmental flow program from Three Gorges, a review of monitoring data collected during the pilot environmental flow releases, the subsequent amendment of the dam operating rules, and prospects for expanding environmental flow implementation in the Yangtze River in coming years
Bending the curve of global freshwater biodiversity loss: an emergency recovery plan
Despite their limited spatial extent, freshwater ecosystems host remarkable biodiversity, including one-third of all vertebrate species. This biodiversity is declining dramatically: Globally, wetlands are vanishing three times faster than forests, and freshwater vertebrate populations have fallen more than twice as steeply as terrestrial or marine populations. Threats to freshwater biodiversity are well documented but coordinated action to reverse the decline is lacking. We present an Emergency Recovery Plan to bend the curve of freshwater biodiversity loss. Priority actions include accelerating implementation of environmental flows; improving water quality; protecting and restoring critical habitats; managing the exploitation of freshwater ecosystem resources, especially species and riverine aggregates; preventing and controlling nonnative species invasions; and safeguarding and restoring river connectivity. We recommend adjustments to targets and indicators for the Convention on Biological Diversity and the Sustainable Development Goals and roles for national and international state and nonstate actors
Bacillus Calmette-Guérin vaccination as defense against SARS-CoV-2 (BADAS):a randomized controlled trial to protect healthcare workers in the USA by enhanced trained immune responses
Background: A large epidemic, such as that observed with SARS-CoV-2, seriously challenges available hospital capacity, and this would be augmented by infection of healthcare workers (HCW). Bacillus Calmette-Guérin (BCG) is a vaccine against tuberculosis, with protective non-specific effects against other respiratory tract infections in vitro and in vivo. Preliminary analyses suggest that regions of the world with existing BCG vaccination programs have lower incidence and mortality from COVID-19. We hypothesize that BCG vaccination can reduce SARS-CoV-2 infection and disease severity. Methods: This will be a placebo-controlled adaptive multi-center randomized controlled trial. A total of 1800 individuals considered to be at high risk, including those with comorbidities (hypertension, diabetes, obesity, reactive airway disease, smokers), racial and ethnic minorities, elderly, teachers, police, restaurant wait-staff, delivery personnel, health care workers who are defined as personnel working in a healthcare setting, at a hospital, medical center or clinic (veterinary, dental, ophthalmology), and first responders (paramedics, firefighters, or law enforcement), will be randomly assigned to two treatment groups. The treatment groups will receive intradermal administration of BCG vaccine or placebo (saline) with groups at a 1:1 ratio. Individuals will be tracked for evidence of SARS-CoV-2 infection and severity as well as obtaining whole blood to track immunological markers, and a sub-study will include cognitive function and brain imaging. The majority of individuals will be followed for 6 months, with an option to extend for another 6 months, and the cognitive sub-study duration is 2 years. We will plot Kaplan-Meier curves that will be plotted comparing groups and hazard ratios and p-values reported using Cox proportional hazard models. Discussion: It is expected this trial will allow evaluation of the effects of BCG vaccination at a population level in high-risk healthcare individuals through a mitigated clinical course of SARS-CoV-2 infection and inform policy making during the ongoing epidemic. Trial registration: ClinicalTrials.gov NCT04348370. Registered on April 16, 2020.</p
Accelerating environmental flow implementation to bend the curve of global freshwater biodiversity loss
Environmental flows (e-flows) aim to mitigate the threat of altered hydrological regimes in river systems and connected waterbodies and are an important component of integrated strategies to address multiple threats to freshwater biodiversity. Expanding and accelerating implementation of e-flows can support river conservation and help to restore the biodiversity and resilience of hydrologically altered and water-stressed rivers and connected freshwater ecosystems. While there have been significant developments in e-flow science, assessment, and societal acceptance, implementation of e-flows within water resource management has been slower than required and geographically uneven. This review explores critical factors that enable successful e-flow implementation and biodiversity outcomes in particular, drawing on 13 case studies and the literature. It presents e-flow implementation as an adaptive management cycle enabled by 10 factors: legislation and governance, financial and human resourcing, stakeholder engagement and co-production of knowledge, collaborative monitoring of ecological and social-economic outcomes, capacity training and research, exploration of trade-offs among water users, removing or retrofitting water infrastructure to facilitate e-flows and connectivity, and adaptation to climate change. Recognising that there may be barriers and limitations to the full and effective enablement of each factor, the authors have identified corresponding options and generalizable recommendations for actions to overcome prominent constraints, drawing on the case studies and wider literature. The urgency of addressing flow-related freshwater biodiversity loss demands collaborative networks to train and empower a new generation of e-flow practitioners equipped with the latest tools and insights to lead adaptive environmental water management globally. Mainstreaming e-flows within conservation planning, integrated water resource management, river restoration strategies, and adaptations to climate change is imperative. The policy drivers and associated funding commitments of the KunmingâMontreal Global Biodiversity Framework offer crucial opportunities to achieve the human benefits contributed by e-flows as nature-based solutions, such as flood risk management, floodplain fisheries restoration, and increased river resilience to climate change
A global agenda for advancing freshwater biodiversity research
Global freshwater biodiversity is declining dramatically, and meeting the challenges of this crisis requires bold goals and the mobilisation of substantial resources. While the reasons are varied, investments in both research and conservation of freshwater biodiversity lag far behind those in the terrestrial and marine realms. Inspired by a global consultation, we identify 15 pressing priority needs, grouped into five research areas, in an effort to support informed stewardship of freshwater biodiversity. The proposed agenda aims to advance freshwater biodiversity research globally as a critical step in improving coordinated actions towards its sustainable management and conservation
A global agenda for advancing freshwater biodiversity research
Global freshwater biodiversity is declining dramatically, and meeting the challenges of this crisis requires bold goals and the mobilisation of substantial resources. While the reasons are varied, investments in both research and conservation of freshwater biodiversity lag far behind those in the terrestrial and marine realms. Inspired by a global consultation, we identify 15 pressing priority needs, grouped into five research areas, in an effort to support informed stewardship of freshwater biodiversity. The proposed agenda aims to advance freshwater biodiversity research globally as a critical step in improving coordinated actions towards its sustainable management and conservation.Peer reviewe
Recommended from our members
A Conceptual Model for Floodplains in the Sacramento-San Joaquin Delta
Floodplains are among the most biologically productive and diverse ecosystems on Earth and they provide significant benefits to society such as attenuation of floodwaters, groundwater recharge, filtration of nutrients and sediments, carbon sequestration, fisheries productivity and recreation. However, floodplains are also among the most converted and threatened ecosystems. Floodplain habitats in the Sacramento-San Joaquin Delta, and throughout Californiaâs Central Valley, have been greatly reduced from their historic extent and key processes that create and maintain floodplains, such as flood flows and meander migration, have been greatly altered. These widespread alterations to habitats and processes have lead to declines in many speciesâ populations in Californiaâs Central Valley and Delta, creating challenges for both environmental and water management. To address these challenges numerous entities and programs are now focused on restoring floodplains and other Delta habitats. This paper provides a conceptual model for floodplains that characterizes the key features and identifies the critical processes, drivers, and linkages that allow floodplains to produce a variety of functional outputs of management importance. These outputs include: (1) the floodplain habitat mosaic, including riparian vegetation and its associated wildlife; (2) spawning and rearing habitat for native fish; and (3) food-web productivity that can support native fish on the floodplain as well as be exported to downstream ecosystems. The model emphasizes that the production of these outputs from floodplains requires vertical and lateral hydrological connectivity across a broad range of flow conditions. For example, long-duration flooding in the spring promotes native fish spawning and food-web productivity that benefits native species
Overcoming Information Limitations for the Prescription of an Environmental Flow Regime for a Central American River
Hydropower dam construction is expanding rapidly in Central America because of the increasing demand for electricity. Although hydropower can provide a low-carbon source of energy, dams can also degrade socially valued riverine and riparian ecosystems and the services they provide. Such degradation can be partially mitigated by the release of environmental flows below dams. However, environmental flows have been applied infrequently to dams in Central America, partly because of the lack of information on the ecological, social, and economic aspects of rivers. This paper presents a case study of how resource and information limitations were addressed in the development of environmental flow recommendations for the Patuca River in Honduras below a proposed hydroelectric dam. To develop flow recommendations, we applied a multistep process that included hydrological analysis and modeling, the collection of traditional ecological knowledge (TEK) during field trips, expert consultation, and environmental flow workshops for scientists, water managers, and community members. The final environmental flow recommendation specifies flow ranges for different components of river hydrology, including low flows for each month, high-flow pulses, and floods, in dry, normal, and wet years. The TEK collected from local and indigenous riverine communities was particularly important for forming hypotheses about flow-dependent ecological and social factors that may be vulnerable to disruption from dam-modified river flows. We show that our recommended environmental flows would have a minimal impact on the dam's potential to generate electricity. In light of rapid hydropower development in Central America, we suggest that environmental flows are important at the local scale, but that an integrated landscape perspective is ultimately needed to pursue hydropower development in a manner that is as ecologically sustainable as possible