47 research outputs found

    Gene translocation links insects and crustaceans

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62560/1/392667a0.pd

    Priority questions for biodiversity conservation in the Mediterranean biome: Heterogeneous perspectives across continents and stakeholders

    Get PDF
    International audienceThe identification of research questions with high relevance for biodiversity conservation is an important step towards designing more effective policies and management actions, and to better allocate funding among alternative conservation options. However, the identification of priority questions may be influenced by regional differences in biodiversity threats and social contexts, and to variations in the perceptions and interests of different stakeholders. Here we describe the results of a prioritization exercise involving six types of stakeholders from the Mediterranean biome, which includes several biodiversity hotspots spread across five regions of the planet (Europe, Africa, North and South America, and Australia). We found great heterogeneity across regions and stakeholder types in the priority topics identified and disagreement among the priorities of research scientists and other stakeholders. However, governance, climate change, and public participation issues were key topics in most regions. We conclude that the identification of research priorities should be targeted in a way that integrates the spectrum of stakeholder interests, potential funding sources and regional needs, and that further development of interdisciplinary studies is required. The key questions identified here provide a basis to identify priorities for research funding aligned with biodiversity conservation needs in this biome

    Predicting youth participation in urban agriculture in Malaysia: insights from the theory of planned behavior and the functional approach to volunteer motivation

    Get PDF
    This study examines factors associated with the decision of Malaysian youth to participate in a voluntary urban agriculture program. Urban agriculture has generated significant interest in developing countries to address concerns over food security, growing urbanization and employment. While an abundance of data shows attracting the participation of young people in traditional agriculture has become a challenge for many countries, few empirical studies have been conducted on youth motivation to participate in urban agriculture programs, particularly in non-Western settings. Drawing on the theories of planned behavior and the functional approach to volunteer motivation, we surveyed 890 students from a public university in Malaysia about their intention to join a new urban agriculture program. Hierarchical regression findings indicated that the strongest predictor of participation was students’ attitude toward urban agriculture, followed by subjective norms, career motives and perceived barriers to participation. The findings from this study may provide useful information to the university program planners in Malaysia in identifying mechanisms for future students’ involvement in the program

    Chronic alcohol ingestion delays skeletal muscle regeneration following injury

    Get PDF
    Background: Chronic alcohol ingestion may cause severe biochemical and pathophysiological derangements to skeletal muscle. Unfortunately, these alcohol-induced events may also prime skeletal muscle for worsened, delayed, or possibly incomplete repair following acute injury. As alcoholics may be at increased risk for skeletal muscle injury, our goals were to identify the effects of chronic alcohol ingestion on components of skeletal muscle regeneration. To accomplish this, age- and gender-matched C57Bl/6 mice were provided normal drinking water or water that contained 20% alcohol (v/v) for 18–20 wk. Subgroups of mice were injected with a 1.2% barium chloride (BaCl2) solution into the tibialis anterior (TA) muscle to initiate degeneration and regeneration processes. Body weights and voluntary wheel running distances were recorded during the course of recovery. Muscles were harvested at 2, 7 or 14 days post-injection and assessed for markers of inflammation and oxidant stress, fiber cross-sectional areas, levels of growth and fibrotic factors, and fibrosis. Results: Body weights of injured, alcohol-fed mice were reduced during the first week of recovery. These mice also ran significantly shorter distances over the two weeks following injury compared to uninjured, alcoholics. Injured TA muscles from alcohol-fed mice had increased TNFα and IL6 gene levels compared to controls 2 days after injury. Total protein oxidant stress and alterations to glutathione homeostasis were also evident at 7 and 14 days after injury. Ciliary neurotrophic factor (CNTF) induction was delayed in injured muscles from alcohol-fed mice which may explain, in part, why fiber cross-sectional area failed to normalize 14 days following injury. Gene levels of TGFβ1 were induced early following injury before normalizing in muscle from alcohol-fed mice compared to controls. However, TGFβ1 protein content was consistently elevated in injured muscle regardless of diet. Fibrosis was increased in injured, muscle from alcohol-fed mice at 7 and 14 days of recovery compared to injured controls. Conclusions: Chronic alcohol ingestion appears to delay the normal regenerative response following significant skeletal muscle injury. This is evidenced by reduced cross-sectional areas of regenerated fibers, increased fibrosis, and altered temporal expression of well-described growth and fibrotic factors

    Burt and Clary abandoned ski slopes dataset

    No full text
    Species cover data and measured environmental characteristics from large (5m by 20 m) plots on abandoned ski slopes of differing ages since abandonment and differing initial construction methods (graded or cleared) and their paired reference forest plots. Readme information included in first worksheet of the excel file

    California perennial grasses are physiologically distinct from both Mediterranean annual and perennial grasses

    Get PDF
    In the Central Valley of California, native perennial grass species have been largely replaced by Eurasian annual species, while in many parts of the Mediterranean Basin native perennial grasses continue to dominate, even on disturbed or degraded sites. We assessed whether differences in summer rainfall patterns have lead to the development of different plant-water strategies between grasses from these two regions. We compared six measures of plant-water physiology for three guilds of grasses: California perennial grasses, Mediterranean perennial grasses, and Mediterranean annual grasses. Discriminant analysis distinguished between the three guilds; Mediterranean perennial grasses were characterized by a more conservative water-relations physiology than Mediterranean annual grasses, whereas California perennial grasses were in some ways intermediate between the two Mediterranean grass guilds. For individual traits, California perennial grasses were either intermediate or more like Mediterranean annuals than Mediterranean perennials. Our results suggest California perennials are more drought tolerant than Mediterranean annuals but less drought tolerant than Mediterranean perennials, despite the fact that California’s Central Valley has a more intense summer drought than the Mediterranean Basin. These patterns may help explain why Mediterranean annuals, but not Mediterranean perennials, have been more successful invaders of interior California grasslands.The authors thank W. Roberts and the University of California, Davis Arboretum for their expertise and S. Sprenkle and M. Wilkerson for valuable discussions and comments on the manuscript. This work was supported by the Elvenia Slosson Endowment and through a Global Invasives Network Research Coordination Network supported research exchange (NSF Grant number 0541673).info:eu-repo/semantics/publishedVersio

    TrkA‐immunoreactive profiles in the central nervous system: Colocalization with neurons containing p75 nerve growth factor receptor, choline acetyltransferase, and serotonin

    No full text
    The present investigation used an antibody directed against the extracellular domain of the signal transducing nerve growth factor recepto, trkA, to reveal immunoreactive perikarya or fibers within the olfactory bulb and tubercle, cingulate cortex, nucleus accumbens, striatum, endopiriform nucleus, septal/diagonal band complex, nucleus basalis, hippocampal complex, thalamic paraventricular and reuniens nuclei, periventricular hypothalamus, interpeduncular nucleus, mesencephalic nucleus of the fifth nerve, dorsal nucleus of the lateral lemniscus, prepositus hypoglossal nucleus, ventral cochlear nucleus, ventral lateral tegmentum, medial vestibular nucleus, spinal trigeminal nucleus oralis, nucleus of the solitary tract, raphe nuclei, and spinal cord. Colocalization experiments revealed that virtually all striatal trk‐Aimmunoreactive neurons (\u3e 99%) coexpressed choline acetyltransferase (ChAT) but not p75 nerve growth factor receptor (NGFR). Within the septal/diagonal band complex virtually all trkA neurons (\u3e 95%) coexpressed both ChAT and p75 NGFR. More caudally, dual stained sections revealed numerous trkA/ChAT (\u3e 80%) and trkA/p75 NGFR (\u3e 95%) immunoreactive neurons within the nucleus basalis. In the brainstem, raphe serotonergic neurons (45%) coexpressed trkA. Sections stained with a pan‐trk antibody that recognizes primarily trkA, as well as trkB and trkC, labeled neurons within all of these regions as well as within the hypothalamic arcuate, supramammilary, and supraoptic nuclei, hippocampus, inferior and superior colliculus, substantia nigra, ventral tegmental area of T\u27sai, and cerebellar Purkinje cells. Virtually all of these other regions with the exception of the cerebellum also expressed pan‐trk immunoreactivity in the monkey. The widespread expression of trkA throughout the central neural axis suggests that this receptor may play a role in signal transduction mechanisms linked to NGF‐related substances in cholinergic basal forebrain and noncholinergic systems. These findings suggest that pharmacological use of ligands for trkA could have beneficial effects on the multiple neuronal systems that are affected in such disorders as Alzheimer\u27s disease. © 1994 Wiley‐Liss, Inc. Copyright © 1994 Wiley‐Liss, Inc

    Regulation of purine metabolism connects KCTD13 to a metabolic disorder with autistic features

    No full text
    Genetic variation of the 16p11.2 deletion locus containing the KCTD13 gene and of CUL3 is linked with autism. This genetic connection suggested that substrates of a CUL3-KCTD13 ubiquitin ligase may be involved in disease pathogenesis. Comparison of Kctd13 mutant (Kctd13(-/-)) and wild-type neuronal ubiquitylomes identified adenylosuccinate synthetase (ADSS), an enzyme that catalyzes the first step in adenosine monophosphate (AMP) synthesis, as a KCTD13 ligase substrate. In Kctd13(-/-) neurons, there were increased levels of succinyl-adenosine (S-Ado), a metabolite downstream of ADSS. Notably, S-Ado levels are elevated in adenylosuccinate lyase deficiency, a metabolic disorder with autism and epilepsy phenotypes. The increased S-Ado levels in Kctd13(-/-)neurons were decreased by treatment with an ADSS inhibitor. Lastly, functional analysis of human KCTD13 variants suggests that KCTD13 variationmay alter ubiquitination of ADSS. These data suggest that succinyl-AMP metabolites accumulate in Kctd13(-/-) neurons, and this observation may have implications for our understanding of 16p11.2 deletion syndrome.ISSN:2589-004
    corecore