436 research outputs found
EMAGE: a spatial database of gene expression patterns during mouse embryo development
EMAGE () is a freely available, curated database of gene expression patterns generated by in situ techniques in the developing mouse embryo. It is unique in that it contains standardized spatial representations of the sites of gene expression for each gene, denoted against a set of virtual reference embryo models. As such, the data can be interrogated in a novel and abstract manner by using space to define a query. Accompanying the spatial representations of gene expression patterns are text descriptions of the sites of expression, which also allows searching of the data by more conventional text-based methods
EMAGE: a spatial database of gene expression patterns during mouse embryo development
EMAGE () is a freely available, curated database of gene expression patterns generated by in situ techniques in the developing mouse embryo. It is unique in that it contains standardized spatial representations of the sites of gene expression for each gene, denoted against a set of virtual reference embryo models. As such, the data can be interrogated in a novel and abstract manner by using space to define a query. Accompanying the spatial representations of gene expression patterns are text descriptions of the sites of expression, which also allows searching of the data by more conventional text-based methods
EMAGE—Edinburgh Mouse Atlas of Gene Expression: 2008 update
EMAGE (http://genex.hgu.mrc.ac.uk/Emage/database) is a database of in situ gene expression patterns in the developing mouse embryo. Domains of expression from raw data images are spatially integrated into a set of standard 3D virtual mouse embryos at different stages of development, allowing data interrogation by spatial methods. Sites of expression are also described using an anatomy ontology and data can be queried using text-based methods. Here we describe recent enhancements to EMAGE which include advances in spatial search methods including: a refined local spatial similarity search algorithm, a method to allow global spatial comparison of patterns in EMAGE and subsequent hierarchical-clustering, and spatial searches across multiple stages of development. In addition, we have extended data access by the introduction of web services and new HTML-based search interfaces, which allow access to data that has not yet been spatially annotated. We have also started incorporating full 3D images of gene expression that have been generated using optical projection tomography (OPT)
EMAGE mouse embryo spatial gene expression database: 2010 update
EMAGE (http://www.emouseatlas.org/emage) is a freely available online database of in situ gene expression patterns in the developing mouse embryo. Gene expression domains from raw images are extracted and integrated spatially into a set of standard 3D virtual mouse embryos at different stages of development, which allows data interrogation by spatial methods. An anatomy ontology is also used to describe sites of expression, which allows data to be queried using text-based methods. Here, we describe recent enhancements to EMAGE including: the release of a completely re-designed website, which offers integration of many different search functions in HTML web pages, improved user feedback and the ability to find similar expression patterns at the click of a button; back-end refactoring from an object oriented to relational architecture, allowing associated SQL access; and the provision of further access by standard formatted URLs and a Java API. We have also increased data coverage by sourcing from a greater selection of journals and developed automated methods for spatial data annotation that are being applied to spatially incorporate the genome-wide (∼19 000 gene) ‘EURExpress’ dataset into EMAGE
Planetary Candidates Observed by Kepler V: Planet Sample from Q1-Q12 (36 Months)
The Kepler mission discovered 2842 exoplanet candidates with 2 years of data.
We provide updates to the Kepler planet candidate sample based upon 3 years
(Q1-Q12) of data. Through a series of tests to exclude false-positives,
primarily caused by eclipsing binary stars and instrumental systematics, 855
additional planetary candidates have been discovered, bringing the total number
known to 3697. We provide revised transit parameters and accompanying posterior
distributions based on a Markov Chain Monte Carlo algorithm for the cumulative
catalogue of Kepler Objects of Interest. There are now 130 candidates in the
cumulative catalogue that receive less than twice the flux the Earth receives
and more than 1100 have a radius less than 1.5 Rearth. There are now a dozen
candidates meeting both criteria, roughly doubling the number of candidate
Earth analogs. A majority of planetary candidates have a high probability of
being bonafide planets, however, there are populations of likely
false-positives. We discuss and suggest additional cuts that can be easily
applied to the catalogue to produce a set of planetary candidates with good
fidelity. The full catalogue is publicly available at the NASA Exoplanet
Archive.Comment: Accepted for publication, ApJ
Planetary Candidates Observed by Kepler. VIII. A Fully Automated Catalog With Measured Completeness and Reliability Based on Data Release 25
We present the Kepler Object of Interest (KOI) catalog of transiting
exoplanets based on searching four years of Kepler time series photometry (Data
Release 25, Q1-Q17). The catalog contains 8054 KOIs of which 4034 are planet
candidates with periods between 0.25 and 632 days. Of these candidates, 219 are
new and include two in multi-planet systems (KOI-82.06 and KOI-2926.05), and
ten high-reliability, terrestrial-size, habitable zone candidates. This catalog
was created using a tool called the Robovetter which automatically vets the
DR25 Threshold Crossing Events (TCEs, Twicken et al. 2016). The Robovetter also
vetted simulated data sets and measured how well it was able to separate TCEs
caused by noise from those caused by low signal-to-noise transits. We discusses
the Robovetter and the metrics it uses to sort TCEs. For orbital periods less
than 100 days the Robovetter completeness (the fraction of simulated transits
that are determined to be planet candidates) across all observed stars is
greater than 85%. For the same period range, the catalog reliability (the
fraction of candidates that are not due to instrumental or stellar noise) is
greater than 98%. However, for low signal-to-noise candidates between 200 and
500 days around FGK dwarf stars, the Robovetter is 76.7% complete and the
catalog is 50.5% reliable. The KOI catalog, the transit fits and all of the
simulated data used to characterize this catalog are available at the NASA
Exoplanet Archive.Comment: 61 pages, 23 Figures, 9 Tables, Accepted to The Astrophysical Journal
Supplement Serie
Planetary Candidates Observed by Kepler VI: Planet Sample from Q1-Q16 (47 Months)
\We present the sixth catalog of Kepler candidate planets based on nearly 4
years of high precision photometry. This catalog builds on the legacy of
previous catalogs released by the Kepler project and includes 1493 new Kepler
Objects of Interest (KOIs) of which 554 are planet candidates, and 131 of these
candidates have best fit radii <1.5 R_earth. This brings the total number of
KOIs and planet candidates to 7305 and 4173 respectively. We suspect that many
of these new candidates at the low signal-to-noise limit may be false alarms
created by instrumental noise, and discuss our efforts to identify such
objects. We re-evaluate all previously published KOIs with orbital periods of
>50 days to provide a consistently vetted sample that can be used to improve
planet occurrence rate calculations. We discuss the performance of our planet
detection algorithms, and the consistency of our vetting products. The full
catalog is publicly available at the NASA Exoplanet Archive.Comment: 18 pages, to be published in the Astrophysical Journal Supplement
Serie
TESS Discovery of a Transiting Super-Earth in the Mensae System
We report the detection of a transiting planet around Mensae (HD
39091), using data from the Transiting Exoplanet Survey Satellite (TESS). The
solar-type host star is unusually bright (V=5.7) and was already known to host
a Jovian planet on a highly eccentric, 5.7-year orbit. The newly discovered
planet has a size of and an orbital period of 6.27
days. Radial-velocity data from the HARPS and AAT/UCLES archives also displays
a 6.27-day periodicity, confirming the existence of the planet and leading to a
mass determination of . The star's proximity and
brightness will facilitate further investigations, such as atmospheric
spectroscopy, asteroseismology, the Rossiter--McLaughlin effect, astrometry,
and direct imaging.Comment: Accepted for publication ApJ Letters. This letter makes use of the
TESS Alert data, which is currently in a beta test phase. The discovery light
curve is included in a table inside the arxiv submissio
Planetary Candidates Observed by Kepler, III: Analysis of the First 16 Months of Data
New transiting planet candidates are identified in sixteen months (May 2009 -
September 2010) of data from the Kepler spacecraft. Nearly five thousand
periodic transit-like signals are vetted against astrophysical and instrumental
false positives yielding 1,091 viable new planet candidates, bringing the total
count up to over 2,300. Improved vetting metrics are employed, contributing to
higher catalog reliability. Most notable is the noise-weighted robust averaging
of multi-quarter photo-center offsets derived from difference image analysis
which identifies likely background eclipsing binaries. Twenty-two months of
photometry are used for the purpose of characterizing each of the new
candidates. Ephemerides (transit epoch, T_0, and orbital period, P) are
tabulated as well as the products of light curve modeling: reduced radius
(Rp/R*), reduced semi-major axis (d/R*), and impact parameter (b). The largest
fractional increases are seen for the smallest planet candidates (197% for
candidates smaller than 2Re compared to 52% for candidates larger than 2Re) and
those at longer orbital periods (123% for candidates outside of 50-day orbits
versus 85% for candidates inside of 50-day orbits). The gains are larger than
expected from increasing the observing window from thirteen months (Quarter 1--
Quarter 5) to sixteen months (Quarter 1 -- Quarter 6). This demonstrates the
benefit of continued development of pipeline analysis software. The fraction of
all host stars with multiple candidates has grown from 17% to 20%, and the
paucity of short-period giant planets in multiple systems is still evident. The
progression toward smaller planets at longer orbital periods with each new
catalog release suggests that Earth-size planets in the Habitable Zone are
forthcoming if, indeed, such planets are abundant.Comment: Submitted to ApJS. Machine-readable tables are available at
http://kepler.nasa.gov, http://archive.stsci.edu/kepler/results.html, and the
NASA Exoplanet Archiv
- …