27 research outputs found

    Activated Kras, but Not Hras or Nras, May Initiate Tumors of Endodermal Origin via Stem Cell Expansion▿

    No full text
    The three closely related human Ras genes, Hras, Nras, and Kras, are all widely expressed, engage a common set of downstream effectors, and can each exhibit oncogenic activity. However, the vast majority of activating Ras mutations in human tumors involve Kras. Moreover, Kras mutations are most frequently seen in tumors of endodermally derived tissues (lung, pancreas, and colon), suggesting that activated Kras may affect an endodermal progenitor to initiate oncogenesis. Using a culture model of retinoic acid (RA)-induced stem cell differentiation to endoderm, we determined that while activated HrasV12 promotes differentiation and growth arrest in these endodermal progenitors, KrasV12 promotes their proliferation. Furthermore, KrasV12-expressing endodermal progenitors fail to differentiate upon RA treatment and continue to proliferate and maintain stem cell characteristics. NrasV12 neither promotes nor prevents differentiation. A structure-function analysis demonstrated that these distinct effects of the Ras isoforms involve their variable C-terminal domains, implicating compartmentalized signaling, and revealed a requirement for several established Ras effectors. These findings indicate that activated Ras isoforms exert profoundly different effects on endodermal progenitors and that mutant Kras may initiate tumorigenesis by expanding a susceptible stem/progenitor cell population. These results potentially explain the high frequency of Kras mutations in tumors of endodermal origin

    Phospholipids can switch the GTPase substrate preference of a GTPase-activating protein.

    No full text
    International audienceThe major cellular inhibitors of the small GTPases of the Ras superfamily are the GTPase-activating proteins (GAPs), which stimulate the intrinsic GTP hydrolyzing activity of GTPases, thereby inactivating them. The catalytic activity of several GAPs is reportedly inhibited or stimulated by various phospholipids and fatty acids in vitro, indicating a likely physiological role for lipids in regulating small GTPases. We find that the p190 RhoGAP, a potent GAP for the Rho and Rac GTPases, is similarly sensitive to phospholipids. Interestingly, however, several of the tested phospholipids were found to effectively inhibit the RhoGAP activity of p190 but stimulate its RacGAP activity. Thus, phospholipids have the ability to "switch" the GTPase substrate preference of a GAP, thereby providing a novel regulatory mechanism for the small GTPases

    Drosophila Rho-kinase (DRok) is required for tissue morphogenesis in diverse compartments of the egg chamber during oogenesis

    Get PDF
    AbstractThe Rho-kinases are widely utilized downstream targets of the activated Rho GTPase that have been directly implicated in many aspects of Rho-dependent effects on F-actin assembly, acto-myosin contractility, and microtubule stability, and consequently play an essential role in regulating cell shape, migration, polarity, and division. We have determined that the single closely related Drosophila Rho-kinase ortholog, DRok, is required for several aspects of oogenesis, including maintaining the integrity of the oocyte cortex, actin-mediated tethering of nurse cell nuclei, “dumping” of nurse cell contents into the oocyte, establishment of oocyte polarity, and the trafficking of oocyte yolk granules. These defects are associated with abnormalities in DRok-dependent actin dynamics and appear to be mediated by multiple downstream effectors of activated DRok that have previously been implicated in oogenesis. DRok regulates at least one of these targets, the membrane cytoskeletal cross-linker DMoesin, via a direct phosphorylation that is required to promote localization of DMoesin to the oocyte cortex. The collective oogenesis defects associated with DRok deficiency reveal its essential role in multiple aspects of proper oocyte formation and suggest that DRok defines a novel class of oogenesis determinants that function as key regulators of several distinct actin-dependent processes required for proper tissue morphogenesis

    Temporal Resolution of Autophosphorylation for Normal and Oncogenic Forms of EGFR and Differential Effects of Gefitinib

    No full text
    Epidermal growth factor receptor (EGFR) is a member of the ErbB family of receptor tyrosine kinases (RTK). EGFR overexpression or mutation in many different forms of cancers has highlighted its role as an important therapeutic target. Gefitinib, the first small molecule inhibitor of EGFR kinase function to be approved for the treatment of nonsmall cell lung cancer (NSCLC) by the FDA, demonstrates clinical activity primarily in patients with tumors that harbor somatic kinase domain mutations in EGFR. Here, we compare wild-type EGFR autophosphorylation kinetics to the L834R (also called L858R) EGFR form, one of the most common mutations in lung cancer patients. Using rapid chemical quench, time-resolved electrospray mass spectrometry (ESI-MS), and Western blot analyses, we examined the order of autophosphorylation in wild-type (WT) and L834R EGFR and the effect of gefitinib (Iressa) on the phosphorylation of individual tyrosines. These studies establish that there is a temporal order of autophosphorylation of key tyrosines involved in downstream signaling for WT EGFR and a loss of order for the oncogenic L834R mutant. These studies also reveal unique signature patterns of drug sensitivity for inhibition of tyrosine autophosphorylation by gefitinib: distinct for WT and oncogenic L834R mutant forms of EGFR. Fluorescence studies show that for WT EGFR the binding affinity for gefitinib is weaker for the phosphorylated protein while for the oncogenic mutant, L834R EGFR, the binding affinity of gefitinib is substantially enhanced and likely contributes to the efficacy observed clinically. This mechanistic information is important in understanding the molecular details underpinning clinical observations as well as to aid in the design of more potent and selective EGFR inhibitors

    Discovery of a benzo[e]pyrimido-[5,4-b][1,4]diazepin-6(11H)-one as a Potent and Selective Inhibitor of Big MAP Kinase 1

    No full text
    Kinome-wide selectivity profiling of a collection of 2-amino-pyrido[2,3-d]pyrimidines followed by cellular structure−activity relationship-guided optimization resulted in the identification of moderately potent and selective inhibitors of BMK1/ERK5 exemplified by <b>11</b>, <b>18</b>, and <b>21</b>. For example, <b>11</b> possesses a dissociation constant (<i>K</i><sub>d</sub>) for BMK1 of 19 nM, a cellular IC<sub>50</sub> for inhibiting epidermal growth factor induced BMK1 autophosphorylation of 0.19 ± 0.04 μM, and an Ambit KINOME<i>scan</i> selectivity score (<i>S</i><sub>5</sub>) of 0.035. Inhibitors <b>18</b> and <b>21</b> are also potent BMK1 inhibitors and possess favorable pharmacokinetic properties which enable their use as pharmacological probes of BMK1-dependent phenomena as well as starting points for further optimization efforts
    corecore