15 research outputs found

    Autoantibodies to central nervous system neuronal surface antigens: psychiatric symptoms and psychopharmacological implications

    Get PDF

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Proapoptotic BID is required for myeloid homeostasis and tumor suppression

    No full text
    The proper expansion and contraction of hematopoietic cells requires tight regulation of cell death. BID, a “BH3-only” molecule, amplifies death receptor signals connecting the extrinsic to intrinsic pathways by triggering the mitochondrial pathway of apoptosis. Bid-deficient mice, as they age, spontaneously develop a myeloproliferative disorder, which progresses from myeloid hyperplasia to a fatal, clonal malignancy closely resembling chronic myelomonocytic leukemia (CMML). Thus, an apoptotic defect can result in myeloid leukemogenesis. Premalignant Bid−/− myeloid precursor cells are resistant to death receptor-induced apoptosis. Furthermore, a competitive reconstitution assay demonstrates that Bid-deficient long-term repopulating cells give rise to expanded myelomonocytic cells in vivo. Surprisingly, a single BH3-only molecule operating in the extrinsic death receptor pathway proved essential in vivo for physiologic cell death required to maintain myeloid homeostasis. Moreover, progression to CMML indicates that an upstream BH3-only molecule, BID, is required to suppress tumorigenesis

    Origin of the sheeted dike complex at superfast spread East Pacific Rise revealed by deep ocean crust drilling at Ocean Drilling Program Hole 1256D

    Get PDF
    Superfast spread (22 cm/a) upper oceanic crust drilled at Ocean Drilling Program site 1256 comprises a thick sequence of extrusive lavas underlain by a thin region of sheeted dikes. The sheeted dikes at this site are characterized by the intimate association of in situ hyaloclastic fragmentation and hydrothermal alteration. Lithostatic and magmastatic pressure estimates reveal that there is no effective level of neutral buoyancy within the extrusive layer to trap dikes in the crust. This results in a situation that favors the extrusion rather than intrusion of magma. Fractures created by magmas rising in dikes were the loci of intense hydrothermal circulation and provided the pathways for subsequent dike intrusions. Magma-rich conditions expected for fast spreading ridge segments give rise to a rapid increase in magmatic pressure, which can result in dike intrusion even under only small deviatoric stress. This allows for the emplacement of narrow dikes in the upper crust, with magmas more likely to extrude, and hence the high extrusive/intrusive ratio for Site 1256. <br/
    corecore