253 research outputs found

    Rod and frame alignment times increase when the frame is tilted.

    Get PDF
    The Rod and Frame test measures an individual’s subjective assessment of visual vertical and horizontal in the presence of a surrounding tilted frame. Attention has focused upon the effects of the surrounding frame upon spatial accuracy (Spatial Frame Effect). We have investigated if the tilted frame also affects the time that subjects take to make the alignment (Temporal Frame Effect). Results: 125 subjects performed a computerised Rod and Frame test to investigate the effects of a tilted frame on subjective visual vertical and horizontal. In addition the program recorded the time taken to make each alignment. For most subjects the mean Spatial Frame Effect was small (vertical 1.62, SD 0.93; horizontal 1.9, SD 1.43). The mean time taken to make alignments in the presence of a tilted frame was longer than when the frame was not tilted (vertical, +3.4s, SD 4.4; horizontal, +3.2s, SD 4.5). Differences in the times taken when the rod and frame were presented congruently and incongruently could be fully accounted for by the differences in steps needed to move the rod to its final alignment. No relationship was found between the spatial accuracy and the time to make the alignment and there was no relationship between the Spatial and Temporal Frame Effects. Conclusions: This study suggests that the Spatial, and Temporal, Frame Effects provide information about different aspects of the process of resolving conflicting visual information when making judgments on alignment. In everyday functions such as the maintenance of balance or susceptibility to motion sickness, the increased time taken may be as important as spatial accuracy

    Young and Older Adults Differ in Integration of Sensory Cues for Vertical Perception.

    Get PDF
    Introduction: The subjective visual vertical (SVV) measures the perception of a person's spatial orientation relative to gravity. Weighted central integration of vestibular, visual, and proprioceptive inputs is essential for SVV perception. Without any visual references and minimal proprioceptive contribution, the static SVV reflects balance of the otolith organs. Normal aging is associated with bilateral and progressive decline in otolith organ function, but age-dependent effects on SVV are inconclusive. Studies on sensory reweighting for visual vertical and multisensory integration strategies reveal age-dependent differences, but most studies have included elderly participants in comparison to younger adults. The aim of this study was to compare young adults with older adults, an age group younger than the elderly. Methods: Thirty-three young and 28 older adults (50-65 years old) adjusted a tilted line accurately to their perceived vertical. The rod's final position from true vertical was recorded as tilt error in degrees. For otolithic balance, visual vertical was recorded in the dark without any visual references. The rod and frame task (RFT) with tilted disorienting visual frames was used for creating visuovestibular conflict. We adopted Nyborg's analysis method to derive the rod and frame effect (RFE) and trial-to-trial variability measures. Rod alignment times were also analyzed. Results: There was no age difference in signed tilts of SVV without visual reference. There was an age effect on RFE and on overall trial-to-trial variability of rod tilt, with older adults displaying larger frame effects and greater variability in rod tilts. Alignment times were longer in the tilted-frame conditions for both groups and in the older adults compared to their younger counterparts. The association between tilt accuracy and tilt precision was significant for older adults only during visuovestibular conflict, revealing an increase in RFE with an increase in tilt variability. Correlation of σSVV, which represents vestibular input precision, with RFE yielded exactly the same contribution of σSVV to the variance in RFE for both age groups. Conclusions: Older adults have balanced otolithic input in an upright position. Increased reliance on visual cues may begin at ages younger than what is considered elderly. Increased alignment times for older adults may create a broader time window for integration of relevant and irrelevant sensory information, thus enhancing their multisensory integration. In parallel with the elderly, older adults may differ from young adults in their integration of sensory cues for visual vertical perception

    The challenges of moving from framework development to the real world: operationalising an oil vulnerability framework for oil spill response in the Canadian Pacific region

    Get PDF
    To support oil spill response planning, and to focus data collection within the Department of Fisheries and Oceans, Canada (DFO), an oil vulnerability framework was developed in 2016, and applied to the Pacific region. Using a criteria scoring (Exposure, Sensitivity and Recovery categories) and screening process, the framework identifies and ranks species sub-groups in terms of their vulnerability to oil. The framework outputs have been applied during oil spill exercises and during the recent Jake Shearer incident near Bella Bella in Nov 2017. Operationalising the framework at the spatial scale and within the time constraints of oil spill response requires a varied approach to deal with lack of spatial data for some groups. Here we present the current working model how we ensure the best available data is feed into the oil spill response

    Is spatial orientation affected by Ramadan fasting?

    Get PDF
    Purpose: Ramadan intermittent fasting (RIF) has produced heterogeneous and domain-specific effects on cognitive function. This study aims to investigate the effect of RIF on verticality perception or estimation of subjective visual vertical (SVV) in young adults. The significance of SVV is that it is essential for spatial orientation, upon which many daily activities depend. Methodology Verticality perception was assessed with a computerized rod and frame test (CRFT) in two visual conditions: without a surrounding frame and with a distracting tilted frame. The tilted frame condition measures level of visual dependence or reliance of visual cues for posture and orientation. In total, 39 young adult men were recruited at different stages of Ramadan fasting: 21 were tested at the end of the first week (Week 1) and 18 others at the end of the third week (Week 3) of Ramadan. Also, 39 participants were recruited to serve as a non-fasting control group. Factorial ANOVA analyses were conducted to identify the main effects of fasting status, time-of-day and the interaction between them on blood glucose levels, nocturnal sleep duration and vertical alignment errors. Findings The main effect of fasting status on glucose level was significant (p = 0.03). There was a significant time-of-day main effect on glucose levels (p = 0.007) and sleep duration (p = 0.004) only in fasting participants. Neither the main effects of fasting status nor time-of-day were significant for rod alignment errors in both visual conditions. The interaction of fasting status and time-of-day was not significant either. This may indicate that any negative effect of Ramadan fasting on activities that are critically dependent on verticality perception and spatial orientation, such as sports and driving, may not be due to verticality misperception. Originality The present study was the first to investigate the effect of Ramadan fasting on spatial orientation. It demonstrated robustness of verticality perception to fasting status and the point of fasting during Ramadan. Verticality perception was also unaffected by time-of-day effects in non-fasting and fasting groups at two different points of Ramadan. This study corroborates others reporting heterogeneous effects of Ramadan fasting on cognitive function

    Oil spill preparedness planning: filling critical species data gaps using habitat suitability modelling

    Get PDF
    Under the World Class Tanker Safety System Initiative (WCTSS) a national framework was developed to identify marine biological organisms most vulnerable to ship-source oil spills. The Pacific regional application of this framework identified 27 highly vulnerable biological groups, with sea grasses, salt marsh grasses/succulents, sea otters, and baleen whales at the top of the list. A gap analysis during the Pacific regional application identified critical species data gaps that must now be filled to ensure effective response in marine oil spill emergencies. In the absence of robust species distribution and abundance data, habitat suitability models can be used to predict this information using environmental spatial data layers and limited species distribution data. The Oceans Protection Plan (OPP) Habitat Suitability Modelling team is developing a workbook of standardized habitat suitability modelling approaches to illustrate how critical species data gaps may be filled. This workbook will include recommendations for data requirements, models to use, and how to deal with modelling challenges. Models will be developed and tested using data from Canada’s North Central Coast study area and then applied in the Salish Sea to the Strait of Georgia study area in support of the south coast Area Response Plan. In addition to the modelling workbook and model predictions, another major output of this project is the extension of bottom type classification layers from 50-200 m depth, which will be useful for other marine spatial planning analyses. The habitat suitability modelling workbook, model predictions, and extended bottom type classification layers will serve as valuable pieces in the larger puzzle of international transboundary ecosystem protection and recovery

    Managing disease outbreaks: The importance of vector mobility and spatially heterogeneous control

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License.Management strategies for control of vector-borne diseases, for example Zika or dengue, include using larvicide and/or adulticide, either through large-scale application by truck or plane or through door-to-door efforts that require obtaining permission to access private property and spray yards. The efficacy of the latter strategy is highly dependent on the compliance of local residents. Here we develop a model for vector-borne disease transmission between mosquitoes and humans in a neighborhood setting, considering a network of houses connected via nearest-neighbor mosquito movement. We incorporate large-scale application of adulticide via aerial spraying through a uniform increase in vector death rates in all sites, and door-to-door application of larval source reduction and adulticide through a decrease in vector emergence rates and an increase in vector death rates in compliant sites only, where control efficacies are directly connected to real-world experimentally measurable control parameters, application frequencies, and control costs. To develop mechanistic insight into the influence of vector motion and compliance clustering on disease controllability, we determine the basic reproduction number R0 for the system, provide analytic results for the extreme cases of no mosquito movement, infinite hopping rates, and utilize degenerate perturbation theory for the case of slow but non-zero hopping rates. We then determine the application frequencies required for each strategy (alone and combined) in order to reduce R0 to unity, along with the associated costs. Cost-optimal strategies are found to depend strongly on mosquito hopping rates, levels of door-to-door compliance, and spatial clustering of compliant houses, and can include aerial spray alone, door-to-door treatment alone, or a combination of both. The optimization scheme developed here provides a flexible tool for disease management planners which translates modeling results into actionable control advice adaptable to system-specific details.Simons Foundation (426126)University of Kansas General Research Grant (2301-2105075)Department of Defense SERDP contract (W912HQ-16-C-0054

    Comparisons of Salmonella conjugation and virulence gene hyperexpression mediated by rumen protozoa from domestic and exotic ruminants

    Get PDF
    Recent studies have identified a phenomenon in which ciliated protozoa engulf Salmonella and the intra-protozoal environment hyperactivates virulence gene expression and provides a venue for conjugal transfer of antibiotic resistance plasmids. The former observation is relegated to Salmonella bearing the SGI1 multiresistance integron while the latter phenomenon appears to be a more generalized event for recipient Salmonella. Our previous studies have assessed virulence gene hyperexpression only with protozoa from the bovine rumen while conjugal transfer has been demonstrated in rumen protozoa from cattle and goats. The present study examined virulence gene hyperexpression for Salmonella exposed to rumen protozoa obtained from cattle, sheep, goats, or two African ruminants (giraffe and bongo). Conjugal transfer was also assessed in these protozoa using Salmonella as the recipient. Virulence gene hyperexpression was only observed following exposure to the rumen protozoa from cattle and sheep while elevated virulence was also observed in these animals. Conjugal transfer events were, however, observed in all protozoa evaluated. It therefore appears that the protozoa-based hypervirulence is not universal to all ruminants while conjugal transfer is more ubiquitous

    Layer-by-Layer Assembled Nanowire Networks Enable Graph Theoretical Design of Multifunctional Coatings

    Full text link
    Multifunctional coatings are central for information, biomedical, transportation and energy technologies. These coatings must possess hard-to-attain properties and be scalable, adaptable, and sustainable, which makes layer-by-layer assembly (LBL) of nanomaterials uniquely suitable for these technologies. What remains largely unexplored is that LBL enables computational methodologies for structural design of these composites. Utilizing silver nanowires (NWs), we develop and validate a graph theoretical (GT) description of their LBL composites. GT successfully describes the multilayer structure with nonrandom disorder and enables simultaneous rapid assessment of several properties of electrical conductivity, electromagnetic transparency, and anisotropy. GT models for property assessment can be rapidly validated due to (1) quasi-2D confinement of NWs and (2) accurate microscopy data for stochastic organization of the NW networks. We finally show that spray-assisted LBL offers direct translation of the GT-based design of composite coatings to additive, scalable manufacturing of drone wings with straightforward extensions to other technologies

    Re-think It Conference Proceedings

    Get PDF
    Essays contributed by participants in Re-think it: Libraries for a New Age, a conference on library design, services, values, and visions, which was held in the Mary Idema Pew Library Learning and Information Commons at Grand Valley State University, August 10 - 12, 2015.https://scholarworks.gvsu.edu/rethinkit_proceedings/1000/thumbnail.jp
    • …
    corecore