192 research outputs found

    Oscillatory surface rheotaxis of swimming E. coli bacteria

    Full text link
    Bacterial contamination of biological conducts, catheters or water resources is a major threat to public health and can be amplified by the ability of bacteria to swim upstream. The mechanisms of this rheotaxis, the reorientation with respect to flow gradients, often in complex and confined environments, are still poorly understood. Here, we follow individual E. coli bacteria swimming at surfaces under shear flow with two complementary experimental assays, based on 3D Lagrangian tracking and fluorescent flagellar labelling and we develop a theoretical model for their rheotactic motion. Three transitions are identified with increasing shear rate: Above a first critical shear rate, bacteria shift to swimming upstream. After a second threshold, we report the discovery of an oscillatory rheotaxis. Beyond a third transition, we further observe coexistence of rheotaxis along the positive and negative vorticity directions. A full theoretical analysis explains these regimes and predicts the corresponding critical shear rates. The predicted transitions as well as the oscillation dynamics are in good agreement with experimental observations. Our results shed new light on bacterial transport and reveal new strategies for contamination prevention.Comment: 12 pages, 5 figure

    The tomato Prf complex is a molecular trap for bacterial effectors based on Pto transphosphorylation

    Get PDF
    The bacteria Pseudomonas syringae is a pathogen of many crop species and one of the model pathogens for studying plant and bacterial arms race coevolution. In the current model, plants perceive bacteria pathogens via plasma membrane receptors, and recognition leads to the activation of general defenses. In turn, bacteria inject proteins called effectors into the plant cell to prevent the activation of immune responses. AvrPto and AvrPtoB are two such proteins that inhibit multiple plant kinases. The tomato plant has reacted to these effectors by the evolution of a cytoplasmic resistance complex. This complex is compromised of two proteins, Prf and Pto kinase, and is capable of recognizing the effector proteins. How the Pto kinase is able to avoid inhibition by the effector proteins is currently unknown. Our data shows how the tomato plant utilizes dimerization of resistance proteins to gain advantage over the faster evolving bacterial pathogen. Here we illustrate that oligomerisation of Prf brings into proximity two Pto kinases allowing them to avoid inhibition by the effectors by transphosphorylation and to activate immune responses

    Portable X-ray fluorescence (pXRF) analysis of heavy metal contamination in church graveyards with contrasting soil types.

    Get PDF
    Human remains have been interred in burial grounds since historic times. Although the re-use of graveyards differs from one country, region or time-period to another, over time graveyard soil may become contaminated or enriched with heavy metal elements. This paper presents heavy metal element soil analysis from two UK church graveyard study sites with contrasting necrosols, but similar burial densities and known burial ages dating back to the 16th Century and some possibly older than 1,000 years. Portable X-Ray fluorescence (pXRF) element laboratory-based analyses were undertaken on surface and near-surface soil pellets. Results show elevated levels of Fe, Pb, Mn, Cr, Cu, Zn and Ca in both necrosols when compared with background values. Element concentration anomalies remained consistently higher than background samples down to 2 m , but reduced with distance away from church buildings. Element concentration anomalies are higher in the clay-rich necrosol than in sandy necrosol. Study results implications suggest that long-used necrosols are likely to be more contaminated with heavy-metal elements than similar soil outside graveyards with implications for burial grounds management, adjacent populations and where burial grounds have been deconsecrated and turned to residential dwellings

    A Global Characterization and Identification of Multifunctional Enzymes

    Get PDF
    Multi-functional enzymes are enzymes that perform multiple physiological functions. Characterization and identification of multi-functional enzymes are critical for communication and cooperation between different functions and pathways within a complex cellular system or between cells. In present study, we collected literature-reported 6,799 multi-functional enzymes and systematically characterized them in structural, functional, and evolutionary aspects. It was found that four physiochemical properties, that is, charge, polarizability, hydrophobicity, and solvent accessibility, are important for characterization of multi-functional enzymes. Accordingly, a combinational model of support vector machine and random forest model was constructed, based on which 6,956 potential novel multi-functional enzymes were successfully identified from the ENZYME database. Moreover, it was observed that multi-functional enzymes are non-evenly distributed in species, and that Bacteria have relatively more multi-functional enzymes than Archaebacteria and Eukaryota. Comparative analysis indicated that the multi-functional enzymes experienced a fluctuation of gene gain and loss during the evolution from S. cerevisiae to H. sapiens. Further pathway analyses indicated that a majority of multi-functional enzymes were well preserved in catalyzing several essential cellular processes, for example, metabolisms of carbohydrates, nucleotides, and amino acids. What’s more, a database of known multi-functional enzymes and a server for novel multi-functional enzyme prediction were also constructed for free access at http://bioinf.xmu.edu.cn/databases/MFEs/index.htm

    Color afterimages in autistic adults

    Get PDF
    It has been suggested that attenuated adaptation to visual stimuli in autism is the result of atypical perceptual priors (e.g., Pellicano and Burr in Trends Cogn Sci 16(10):504–510, 2012. doi:10.​1016/​j.​tics.​2012.​08.​009). This study investigated adaptation to color in autistic adults, measuring both strength of afterimage and the influence of top-down knowledge. We found no difference in color afterimage strength between autistic and typical adults. Effects of top-down knowledge on afterimage intensity shown by Lupyan (Acta Psychol 161:117–130, 2015. doi:10.​1016/​j.​actpsy.​2015.​08.​006) were not replicated for either group. This study finds intact color adaptation in autistic adults. This is in contrast to findings of attenuated adaptation to faces and numerosity in autistic children. Future research should investigate the possibility of developmental differences in adaptation and further examine top-down effects on adaptation

    Falls in young, middle-aged and older community dwelling adults: perceived cause, environmental factors and injury

    Get PDF
    BACKGROUND: Falls in older people have been characterized extensively in the literature, however little has been reported regarding falls in middle-aged and younger adults. The objective of this paper is to describe the perceived cause, environmental influences and resultant injuries of falls in 1497 young (20–45 years), middle-aged (46–65 years) and older (> 65 years) men and women from the Baltimore Longitudinal Study on Aging. METHODS: A descriptive study where participants completed a fall history questionnaire describing the circumstances surrounding falls in the previous two years. RESULTS: The reporting of falls increased with age from 18% in young, to 21% in middle-aged and 35% in older adults, with higher rates in women than men. Ambulation was cited as the cause of the fall most frequently in all gender and age groups. Our population reported a higher percentage of injuries (70.5%) than previous studies. The young group reported injuries most frequently to wrist/hand, knees and ankles; the middle-aged to their knees and the older group to their head and knees. Women reported a higher percentage of injuries in all age groups. CONCLUSION: This is the first study to compare falls in young, middle and older aged men and women. Significant differences were found between the three age groups with respect to number of falls, activities engaged in prior to falling, perceived causes of the fall and where they fell

    Kiwi Forego Vision in the Guidance of Their Nocturnal Activities

    Get PDF
    BACKGROUND: In vision, there is a trade-off between sensitivity and resolution, and any eye which maximises information gain at low light levels needs to be large. This imposes exacting constraints upon vision in nocturnal flying birds. Eyes are essentially heavy, fluid-filled chambers, and in flying birds their increased size is countered by selection for both reduced body mass and the distribution of mass towards the body core. Freed from these mass constraints, it would be predicted that in flightless birds nocturnality should favour the evolution of large eyes and reliance upon visual cues for the guidance of activity. METHODOLOGY/PRINCIPAL FINDINGS: We show that in Kiwi (Apterygidae), flightlessness and nocturnality have, in fact, resulted in the opposite outcome. Kiwi show minimal reliance upon vision indicated by eye structure, visual field topography, and brain structures, and increased reliance upon tactile and olfactory information. CONCLUSIONS/SIGNIFICANCE: This lack of reliance upon vision and increased reliance upon tactile and olfactory information in Kiwi is markedly similar to the situation in nocturnal mammals that exploit the forest floor. That Kiwi and mammals evolved to exploit these habitats quite independently provides evidence for convergent evolution in their sensory capacities that are tuned to a common set of perceptual challenges found in forest floor habitats at night and which cannot be met by the vertebrate visual system. We propose that the Kiwi visual system has undergone adaptive regressive evolution driven by the trade-off between the relatively low rate of gain of visual information that is possible at low light levels, and the metabolic costs of extracting that information
    corecore