245 research outputs found

    Design, baseline characteristics, and retention of African American light smokers into a randomized trial involving biological data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>African Americans experience significant tobacco-related health disparities despite the fact that over half of African American smokers are light smokers (use ≤10 cigarettes per day). African Americans have been under-represented in smoking cessation research, and few studies have evaluated treatment for light smokers. This paper describes the study design, measures, and baseline characteristics from <it>Kick It at Swope III </it>(KIS-III), the first treatment study of bupropion for African American light smokers.</p> <p>Methods</p> <p>Five hundred forty African American light smokers were randomly assigned to receive bupropion (150mg bid) (n = 270) or placebo (n = 270) for 7 weeks. All participants received written materials and health education counseling. Participants responded to survey items and provided blood samples for evaluation of phenotype and genotype of CYP2A6 and CYP2B6 enzymes involved in nicotine and bupropion metabolism. Primary outcome was cotinine-verified 7-day point prevalence smoking abstinence at Week 26 follow-up.</p> <p>Results</p> <p>Of 2,628 individuals screened, 540 were eligible, consented, and randomized to treatment. Participants had a mean age of 46.5 years and 66.1% were women. Participants smoked an average of 8.0 cigarettes per day, had a mean exhaled carbon monoxide of 16.4ppm (range 1-55) and a mean serum cotinine of 275.8ng/ml. The mean Fagerström Test for Nicotine Dependence was 3.2, and 72.2% of participants smoked within 30 minutes of waking. The average number of quit attempts in the past year was 3.7 and 24.2% reported using pharmacotherapy in their most recent quit attempt. Motivation and confidence to quit were high.</p> <p>Conclusion</p> <p>KIS-III is the first study designed to examine both nicotine and bupropion metabolism, evaluating CYP2A6 and CYP2B6 phenotype and genotype in conjunction with psychosocial factors, in the context of treatment of African American light smokers. Of 1629 smokers screened for study participation, only 18 (1.1%) were ineligible to participate in the study because they refused blood draws, demonstrating the feasibility of recruiting and enrolling African American light smokers into a clinical treatment trial involving biological data collection and genetic analyses. Future evaluation of individual factors associated with treatment outcome will contribute to advancing tailored tobacco use treatment with the goal of enhancing treatment and reducing health disparities for African American light smokers.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov: <a href="URL">NCT00666978</a></p

    A Role for Drosophila dFoxO and dFoxO 5′UTR Internal Ribosomal Entry Sites during Fasting

    Get PDF
    One way animals may cope with nutrient deprivation is to broadly repress translation by inhibiting 5′-cap initiation. However, under these conditions specific proteins remain essential to survival during fasting. Such peptides may be translated through initiation at 5′UTR Internal Ribosome Entry Sites (IRES). Here we show that the Drosophila melanogaster Forkhead box type O (dFoxO) transcription factor is required for adult survival during fasting, and that the 5′UTR of dfoxO has the ability to initiate IRES-mediated translation in cell culture. Previous work has shown that insulin negatively regulates dFoxO through AKT-mediated phosphorylation while dFoxO itself induces transcription of the insulin receptor dInR, which also harbors IRES. Here we report that IRES-mediated translation of both dFoxO and dInR is activated in fasted Drosophila S2 cells at a time when cap-dependent translation is reduced. IRES mediated translation of dFoxO and dInR may be essential to ensure function and sensitivity of the insulin signaling pathway during fasting

    Morphological and Pathological Evolution of the Brain Microcirculation in Aging and Alzheimer’s Disease

    Get PDF
    Key pathological hallmarks of Alzheimer’s disease (AD), including amyloid plaques, cerebral amyloid angiopathy (CAA) and neurofibrillary tangles do not completely account for cognitive impairment, therefore other factors such as cardiovascular and cerebrovascular pathologies, may contribute to AD. In order to elucidate the microvascular changes that contribute to aging and disease, direct neuropathological staining and immunohistochemistry, were used to quantify the structural integrity of the microvasculature and its innervation in three oldest-old cohorts: 1) nonagenarians with AD and a high amyloid plaque load; 2) nonagenarians with no dementia and a high amyloid plaque load; 3) nonagenarians without dementia or amyloid plaques. In addition, a non-demented (ND) group (average age 71 years) with no amyloid plaques was included for comparison. While gray matter thickness and overall brain mass were reduced in AD compared to ND control groups, overall capillary density was not different. However, degenerated string capillaries were elevated in AD, potentially suggesting greater microvascular “dysfunction” compared to ND groups. Intriguingly, apolipoprotein ε4 carriers had significantly higher string vessel counts relative to non-ε4 carriers. Taken together, these data suggest a concomitant loss of functional capillaries and brain volume in AD subjects. We also demonstrated a trend of decreasing vesicular acetylcholine transporter staining, a marker of cortical cholinergic afferents that contribute to arteriolar vasoregulation, in AD compared to ND control groups, suggesting impaired control of vasodilation in AD subjects. In addition, tyrosine hydroxylase, a marker of noradrenergic vascular innervation, was reduced which may also contribute to a loss of control of vasoconstriction. The data highlight the importance of the brain microcirculation in the pathogenesis and evolution of AD

    Antiglucocorticoid RU38486 reduces net protein catabolism in experimental acute renal failure

    Get PDF
    BACKGROUND: In acute renal failure, a pronounced net protein catabolism occurs that has long been associated with corticoid action. By competitively blocking the glucocorticoid receptor with the potent antiglucocorticoid RU 38486, the present study addressed the question to what extent does corticoid action specific to uremia cause the observed muscle degradation, and does inhibition of glucocorticoid action reduce the protein wasting? METHODS: RU 38486 was administered in a dose of 50 mg/kg/24 h for 48 h after operation to fasted bilaterally nephrectomized (BNX) male adult Wistar rats and sham operated (SHAM) controls. Protein turnover was evaluated by high performance liquid chromatography (HPLC) of amino acid efflux in sera from isolated perfused hindquarters of animals treated with RU 38486 versus untreated controls. RESULTS: Administration of RU 38486 reduces the total amino acid efflux (TAAE) by 18.6% in SHAM and 15.6% in BNX and efflux of the indicator of net protein turnover, phenylalanine (Phe) by 33.3% in SHAM and 13% in BNX animals as compared to the equally operated, but untreated animals. However, the significantly higher protein degradation observed in BNX (0.6 ± 0.2 nmol/min/g muscle) versus SHAM (0.2 ± 0.1 nmol/min/g muscle) rats, as demonstrated by the marker of myofribrillar proteolytic rate, 3-Methylhistidine (3 MH) remains unaffected by administration of RU 38486 (0.5 ± 0.1 v. 0.2 ± 0.1 nmol/min/g muscle in BNX v. SHAM). CONCLUSION: RU 38486 does not act on changes of muscular protein turnover specific to uremia but reduces the effect of stress- stimulated elevated corticosterone secretion arising from surgery and fasting. A potentially beneficial effect against stress- induced catabolism in severe illness can be postulated that merits further study

    Public Attitudes Towards Moral Enhancement. Evidence that Means Matter Morally

    Get PDF
    To gain insight into the reasons that the public may have for endorsing or eschewing pharmacological moral enhancement for themselves or for others, we used empirical tools to explore public attitudes towards these issues. Participants (N = 293) from the United States were recruited via Amazon’s Mechanical Turk and were randomly assigned to read one of several contrastive vignettes in which a 13-year-old child is described as bullying another student in school and then is offered an empathy-enhancing program. The empathy-enhancing program is described as either involving taking a pill or playing a video game on a daily basis for four weeks. In addition, participants were asked to imagine either their own child bullying another student at school, or their own child being bullied by another student. This resulted in a 2 × 2 between-subjects design. In an escalating series of morally challenging questions, we asked participants to rate their overall support for the program; whether they would support requiring participation; whether they would support requiring participation of children who are at higher risk to become bullies in the future; whether they would support requiring participation of all children or even the entire population; and whether they would be willing to participate in the program themselves. We found that people were significantly more troubled by pharmacological as opposed to non-pharmacological moral enhancement interventions. The results indicate that members of the public for the greater part oppose pharmacological moral bioenhancement, yet are open to non-biomedical means to attain moral enhancement. [248 words]

    Features, Causes and Consequences of Splanchnic Sequestration of Amino Acid in Old Rats

    Get PDF
    RATIONALE: In elderly subjects, splanchnic extraction of amino acids (AA) increases during meals in a process known as splanchnic sequestration of amino acids (SSAA). This process potentially contributes to the age-related progressive decline in muscle mass via reduced peripheral availability of dietary AA. SSAA mechanisms are unknown but may involve an increased net utilization of ingested AA in the splanchnic area. OBJECTIVES: Using stable isotope methodology in fed adult and old rats to provide insight into age-related SSAA using three hypotheses: 1) an increase in protein synthesis in the gut and/or the liver, 2) an increase in AA oxidation related to an increased ureagenesis, and 3) Kupffer cell (KC) activation consequently to age-related low-grade inflammation. FINDINGS: Splanchnic extraction of Leu (SPELeu) was doubled in old rats compared to adult rats and was not changed after KC inactivation. No age-related effects on gut and liver protein synthesis were observed, but urea synthesis was lower in old rats and negatively correlated to liver Arg utilization. Net whole-body protein synthesis and arterial AA levels were lower in old rats and correlated negatively with SPELeu. CONCLUSION: SSAA is not the consequence of age-related alterations in ureagenesis, gut or liver protein synthesis or of KC activity. However, SSAA may be related to reduced net whole-body protein synthesis and consequently to the reduced lean body mass that occurs during aging

    Distinguishing the Impacts of Inadequate Prey and Vessel Traffic on an Endangered Killer Whale (Orcinus orca) Population

    Get PDF
    Managing endangered species often involves evaluating the relative impacts of multiple anthropogenic and ecological pressures. This challenge is particularly formidable for cetaceans, which spend the majority of their time underwater. Noninvasive physiological approaches can be especially informative in this regard. We used a combination of fecal thyroid (T3) and glucocorticoid (GC) hormone measures to assess two threats influencing the endangered southern resident killer whales (SRKW; Orcinus orca) that frequent the inland waters of British Columbia, Canada and Washington, U.S.A. Glucocorticoids increase in response to nutritional and psychological stress, whereas thyroid hormone declines in response to nutritional stress but is unaffected by psychological stress. The inadequate prey hypothesis argues that the killer whales have become prey limited due to reductions of their dominant prey, Chinook salmon (Oncorhynchus tshawytscha). The vessel impact hypothesis argues that high numbers of vessels in close proximity to the whales cause disturbance via psychological stress and/or impaired foraging ability. The GC and T3 measures supported the inadequate prey hypothesis. In particular, GC concentrations were negatively correlated with short-term changes in prey availability. Whereas, T3 concentrations varied by date and year in a manner that corresponded with more long-term prey availability. Physiological correlations with prey overshadowed any impacts of vessels since GCs were lowest during the peak in vessel abundance, which also coincided with the peak in salmon availability. Our results suggest that identification and recovery of strategic salmon populations in the SRKW diet are important to effectively promote SRKW recovery

    Novel Methods for Analysing Bacterial Tracks Reveal Persistence in Rhodobacter sphaeroides

    Get PDF
    Tracking bacteria using video microscopy is a powerful experimental approach to probe their motile behaviour. The trajectories obtained contain much information relating to the complex patterns of bacterial motility. However, methods for the quantitative analysis of such data are limited. Most swimming bacteria move in approximately straight lines, interspersed with random reorientation phases. It is therefore necessary to segment observed tracks into swimming and reorientation phases to extract useful statistics. We present novel robust analysis tools to discern these two phases in tracks. Our methods comprise a simple and effective protocol for removing spurious tracks from tracking datasets, followed by analysis based on a two-state hidden Markov model, taking advantage of the availability of mutant strains that exhibit swimming-only or reorientating-only motion to generate an empirical prior distribution. Using simulated tracks with varying levels of added noise, we validate our methods and compare them with an existing heuristic method. To our knowledge this is the first example of a systematic assessment of analysis methods in this field. The new methods are substantially more robust to noise and introduce less systematic bias than the heuristic method. We apply our methods to tracks obtained from the bacterial species Rhodobacter sphaeroides and Escherichia coli. Our results demonstrate that R. sphaeroides exhibits persistence over the course of a tumbling event, which is a novel result with important implications in the study of this and similar species

    Microtubule Actin Crosslinking Factor 1 Regulates the Balbiani Body and Animal-Vegetal Polarity of the Zebrafish Oocyte

    Get PDF
    Although of fundamental importance in developmental biology, the genetic basis for the symmetry breaking events that polarize the vertebrate oocyte and egg are largely unknown. In vertebrates, the first morphological asymmetry in the oocyte is the Balbiani body, a highly conserved, transient structure found in vertebrates and invertebrates including Drosophila, Xenopus, human, and mouse. We report the identification of the zebrafish magellan (mgn) mutant, which exhibits a novel enlarged Balbiani body phenotype and a disruption of oocyte polarity. To determine the molecular identity of the mgn gene, we positionally cloned the gene, employing a novel DNA capture method to target region-specific genomic DNA of 600 kb for massively parallel sequencing. Using this technique, we were able to enrich for the genomic region linked to our mutation within one week and then identify the mutation in mgn using massively parallel sequencing. This is one of the first successful uses of genomic DNA enrichment combined with massively parallel sequencing to determine the molecular identity of a gene associated with a mutant phenotype. We anticipate that the combination of these technologies will have wide applicability for the efficient identification of mutant genes in all organisms. We identified the mutation in mgn as a deletion in the coding sequence of the zebrafish microtubule actin crosslinking factor 1 (macf1) gene. macf1 is a member of the highly conserved spectraplakin family of cytoskeletal linker proteins, which play diverse roles in polarized cells such as neurons, muscle cells, and epithelial cells. In mgn mutants, the oocyte nucleus is mislocalized; and the Balbiani body, localized mRNAs, and organelles are absent from the periphery of the oocyte, consistent with a function for macf1 in nuclear anchoring and cortical localization. These data provide the first evidence for a role for spectraplakins in polarization of the vertebrate oocyte and egg
    corecore