869 research outputs found

    Predictability of large future changes in a competitive evolving population

    Full text link
    The dynamical evolution of many economic, sociological, biological and physical systems tends to be dominated by a relatively small number of unexpected, large changes (`extreme events'). We study the large, internal changes produced in a generic multi-agent population competing for a limited resource, and find that the level of predictability actually increases prior to a large change. These large changes hence arise as a predictable consequence of information encoded in the system's global state.Comment: 10 pages, 3 figure

    Magnetoacoustic Portals and the Basal Heating of the Solar Chromosphere

    Get PDF
    We show that inclined magnetic field lines at the boundaries of large-scale convective cells (supergranules) provide "portals" through which low-frequency ( 5 mHz) acoustic waves, which are believed to provide the dominant source of wave heating of the chromosphere. This result opens up the possibility that low-frequency magnetoacoustic waves provide a significant source of energy for balancing the radiative losses of the ambient solar chromosphere

    Dynamical Solution of the On-Line Minority Game

    Full text link
    We solve the dynamics of the on-line minority game, with general types of decision noise, using generating functional techniques a la De Dominicis and the temporal regularization procedure of Bedeaux et al. The result is a macroscopic dynamical theory in the form of closed equations for correlation- and response functions defined via an effective continuous-time single-trader process, which are exact in both the ergodic and in the non-ergodic regime of the minority game. Our solution also explains why, although one cannot formally truncate the Kramers-Moyal expansion of the process after the Fokker-Planck term, upon doing so one still finds the correct solution, that the previously proposed diffusion matrices for the Fokker-Planck term are incomplete, and how previously proposed approximations of the market volatility can be traced back to ergodicity assumptions.Comment: 25 pages LaTeX, no figure

    Comparative Genomics of Carriage and Disease Isolates of Streptococcus pneumoniae Serotype 22F Reveals Lineage-Specific Divergence and Niche Adaptation

    Get PDF
    Streptococcus pneumoniae is a major cause of meningitis, sepsis, and pneumonia worldwide. Pneumococcal conjugate vaccines have been part of the United Kingdom’s childhood immunization program since 2006 and have significantly reduced the incidence of disease due to vaccine efficacy in reducing carriage in the population. Here we isolated two clones of 22F (an emerging serotype of clinical concern, multilocus sequence types 433 and 698) and conducted comparative genomic analysis on four isolates, paired by Sequence Type (ST) with one of each pair being derived from carriage and the other disease (sepsis). The most compelling observation was of nonsynonymous mutations in pgdA, encoding peptidoglycan N-acetylglucosamine deacetylase A, which was found in the carriage isolates of both ST433 and 698. Deacetylation of pneumococcal peptidoglycan is known to enable resistance to lysozyme upon invasion. Althought no other clear genotypic signatures related to disease or carriage could be determined, additional intriguing comparisons between the two STs were possible. These include the presence of an intact prophage, in addition to numerous additional phage insertions, within the carriage isolate of ST433. Contrasting gene repertoires related to virulence and colonization, including bacteriocins, lantibiotics, and toxin-–antitoxin systems, were also observed

    Data reduction pipeline for MOF-based synoptic telescopes

    Get PDF
    There are strong scientific cases and practical reasons for building ground-based solar synoptic telescopes. Some issues, like the study of solar dynamics and the forecasting of solar flares, benefit from the 3D reconstruction of the Sun's atmosphere and magnetic field. Others, like the monitoring and prediction of space weather, require full disk observations, at the proper sampling rate, combining H-alpha images and Doppler velocity and magnetic field. The synoptic telescopes based on Magneto Optical Filters (MOF) using different lines are capable of measuring the line-of-sight Doppler velocity and magnetic field over the full solar disk at different ranges of height in the Sun's photosphere and low chromosphere. Instruments like the MOTH (Magneto-Optical filters at Two Heights), using a dual-channel based on MOFs operating at 589.0 nm (Na D2 line) and 769.9 nm (K D1 line), the VAMOS instrument (Velocity And Magnetic Observations of the Sun), operating at 769.9 nm (K D1 line), and the future TSST (Tor Vergata Synoptic Solar Telescope), using a dual-channel telescope operating at 656.28 nm (H-alpha line) and at 769.9 nm (K D1 line), allow to face both aspects, the scientific and the operative related to Space Weather applications. The MOTH, VAMOS and TSST data enable a wide variety of studies of the Sun, from seismic probing of the solar interior (sound speed, rotation, details of the tachocline, sub-surface structure of active regions), to the dynamics and magnetic evolution of the lower part of the solar atmosphere (heating of the solar atmosphere, identification of the signatures of solar eruptive events, atmospheric gravity waves, etc.), to the 3D reconstruction of the solar atmosphere and flare locations. However, the use of MOF filters requires special care in calibrating the data for scientific or operational use. This work presents a systematic pipeline that derives from the decennial use of MOF's technology. More in detail, the pipeline is based on data reduction procedures tested and validated on MOTH data acquired at Mees Solar Observatory of the University of Hawaii Haleakala Observatories and at South Pole Solar Observatory (SPSO), at the Amundsen-Scott South Pole Station in Antarctica, during Antarctica Summer Campaign 2016/17

    "Oh! What a tangled web we weave": Englishness, communicative leisure, identity work and the cultural web of the English folk morris dance scene

    Get PDF
    In this paper, we consider the relationship between Englishness and the English folk morris dance scene, considering how the latter draws from and reinforces the former. Englishness is considered within the context of the cultural web; a tool more often applied to business management but linked to a sociological viewpoint here. By doing so, we draw the connections between this structured business model and the cultural identity of Englishness. Then, we use the framework of the cultural web and theories of leisure, culture and identity to understand how morris dancers see their role as dancers and ‘communicative leisure’ agents in consciously defending Englishness, English traditions and inventions, the practices and traditions of folk and morris, and the various symbolic communities they inhabit. We argue that most morris dancers in our research become and maintain their leisured identities as dancers because they are attracted to the idea of tradition – even if that tradition is invented and open to change

    Dynamic Behaviors of Mix-game Model and Its Applications

    Full text link
    This paper proposes a modification to Minority Game (MG) by adding some agents who play majority game into MG. So it is referred to as mix-game. The highlight of this model is that the two groups of agents in mix-game have different bounded abilities to deal with history information and to count their own performance. Through simulations, this paper finds out that the local volatilities change a lot by adding some agents who play majority game into MG, and the change of local volatilities largely depends on different combinations of history memories of the two groups. Furthermore this paper analyses the underlying mechanisms for this finding. It also gives an example of applications of mix-game.Comment: 22 pages, 11 figure, 1 table,revised versio

    Modern optical astronomy: technology and impact of interferometry

    Get PDF
    The present `state of the art' and the path to future progress in high spatial resolution imaging interferometry is reviewed. The review begins with a treatment of the fundamentals of stellar optical interferometry, the origin, properties, optical effects of turbulence in the Earth's atmosphere, the passive methods that are applied on a single telescope to overcome atmospheric image degradation such as speckle interferometry, and various other techniques. These topics include differential speckle interferometry, speckle spectroscopy and polarimetry, phase diversity, wavefront shearing interferometry, phase-closure methods, dark speckle imaging, as well as the limitations imposed by the detectors on the performance of speckle imaging. A brief account is given of the technological innovation of adaptive-optics (AO) to compensate such atmospheric effects on the image in real time. A major advancement involves the transition from single-aperture to the dilute-aperture interferometry using multiple telescopes. Therefore, the review deals with recent developments involving ground-based, and space-based optical arrays. Emphasis is placed on the problems specific to delay-lines, beam recombination, polarization, dispersion, fringe-tracking, bootstrapping, coherencing and cophasing, and recovery of the visibility functions. The role of AO in enhancing visibilities is also discussed. The applications of interferometry, such as imaging, astrometry, and nulling are described. The mathematical intricacies of the various `post-detection' image-processing techniques are examined critically. The review concludes with a discussion of the astrophysical importance and the perspectives of interferometry.Comment: 65 pages LaTeX file including 23 figures. Reviews of Modern Physics, 2002, to appear in April issu
    • 

    corecore