96 research outputs found

    Bush Lupine Mortality, Altered Resource Availability, and Alternative Vegetaion States

    Get PDF
    Nitrogen-fixing plants, by altering the availability of soil N, potentially facilitate plant invasion. Here we describe how herbivore-driven mortality of a native N-fixing shrub, bush lupine (Lupinus arboreus), increases soil N and light availability, which promotes invasion by introduced grasses to the detriment of a native plant community. Soils under live and dead lupine stands contained large amounts of total N, averaging 3.14 mg N/g dry mass of soil (398 g/m2) and 3.45 mg N/g dry mass of soil (438 g/m2), respectively, over four years. In contrast, similar lupine-free soil was low in N and averaged only 1.66 mg N/g dry mass of soil (211 g/m2) over three years. The addition of N fertilizer to lupine-free soil produced an 81% increase in aboveground plant biomass compared to plots unamended with N. Mean rates of net N mineralization were higher under live lupine and where mass die-off of lupine had occurred compared to soils free of bush lupine. At all sites, only 2.5–4.2% of the total soil N pool was mineralized annually. Soil enriched by lupine is not available to colonists while lupines are alive. The dense canopy of lupine shades soil under shrubs, reducing average photon-flux density in late spring from 1725 μmol·m−2·s−1 (full sunlight) to 13 μmol·m−2·s−1 (underneath shrubs). Stand die-off due to insect herbivory exposed this bare, enriched soil. In January, when annual plants are establishing, average photon-flux density under dead lupines killed by insect herbivores was 370 μmol·m−2·s−1, compared to the photon-flux density under live lupines of the same age, which averaged 83 μmol·m−2·s−1. The availability of bare, N-rich patches of soil enabled nonnative annuals (primarily Lolium multiflorum and Bromus diandrus) to colonize sites, grow rapidly, and dominate the plant assemblage until lupines reestablished after several years. The N content of these grasses was significantly greater than the N content of the mostly native plants that occupied adjacent coastal prairie devoid of bush lupine. Between 57 and 70% of the net amount of N mineralized annually was taken up by introduced grasses and subsequently returned to the soil upon the death of these annuals. Even in the absence of further N inputs, we estimate that it would take at least 25 yr to reduce the soil N pool by 50%, indicating that the reestablishment of the native prairie flora is likely to be long term

    Restoring Enriched Grasslands: Effects of Mowing on Species Richness, Productivity, and Nitrogen Retention

    Get PDF
    Species-rich grasslands that become enriched with nitrogen often suffer decreases in species richness, increases in plant biomass, and invasion by weedy exotic species. Suitable techniques to restore enriched grasslands and reestablish native communities are increasingly needed. Here we report results of a 5-yr experiment in enriched coastal prairie grasslands (Bodega Marine Reserve, Bodega Bay, California, USA), to determine the combined effects of mowing and biomass removal on total soil nitrogen, net rates of mineralization, nitrogen retention, and species richness and biomass. We mowed and removed plant biomass from plots in areas where the N-fixing shrub, bush lupine (Lupinus arboreus), had greatly enriched the soil, and where the community was composed of weedy introduced plants. Our goal was to facilitate the establishment of the native grassland assemblage such as was found at nearby low soil nitrogen sites. Mowing and biomass removal resulted in a dramatic change in the species assemblage, from exotic annual grasses to a mixed exotic/native forb community composed primarily of perennials. Species richness was significantly greater in treated plots than in control plots; weedy exotic grasses diminished in abundance, and both native and exotic forb species increased. In mowed vs. control plots, there was significantly less mean aboveground biomass, but significantly greater belowground biomass. This shift in species composition had significant impacts on nitrogen retention. In late fall and winter when plant-available N was highest, much nitrogen leached from the effectively fallow control plots where germination of annual grasses did not peak until midwinter. In contrast, mowed plots retained substantially greater amounts of nitrogen, due to the presence of perennial plants possessing large amounts of belowground biomass early in the season. Despite the cumulative removal of 22 g N/m2 in biomass over 5 yr, there was no difference between mowed and control plots in total soil N, pool sizes of inorganic N, or net rates of N mineralization. The results indicate that removal of plant biomass by mowing shifted this plant community from an annual grass to a perennial forb assemblage. However, in doing so, N retention by vegetation was increased, making it more difficult to reduce soil N

    Taxonomic status of diploid Salicornai europaea (s.L.) (Chenopodiaceae) in northeastern North America.

    Get PDF
    The taxonomic status of diploid Salicornia europaea L. (s.1.) in northeastern North America has been evaluated based on morphological and electrophoretic variation within and between populations. Populations of two European diploid micro- species, S. ramosissima J. Woods and S. europaea (s.s.), and populations of the midwestern diploid, S. rubra A. Nels., were also examined, affording a comparison between North American S. europaea (s.1.) and recognized species. Anther length, width of the scarious border of the fertile segment, and floral perianth shape were used to subdivide North American diploid populations into two groups. These groups were morphologically distinct from S. rubra and the European microspecies. The electrophoretic profile was unique in each morphologically distinct group of populations of S. europaea (s.1.) in northeastern North America. Based on morphological, geographical, and electrophoretic differences, diploid populations of S. europaea (s.1.) from this region are assigned to one of the following two new species: S. maririma Wolff & Jefferies, sp.nov., and S. borealis Wolff & Jefferies, sp.nov. The tetraploids are retained in S. europaea (s.1.)

    Factors affecting the site of investment, and the reliance on savings for arctic breeders : the capital–income dichotomy revisited

    Get PDF
    The extent to which migratory birds that breed in the Arctic and winter in southern biomes rely on residual body stores for reproduction is unresolved. The short arctic summer and the limited availability of food early in the season constrain the time available for successful reproduction. Birds that are able to bring sufficient endogenous reserves to the breeding ground to meet, at least partially, the demands of egg-laying can initiate clutch production soon after arrival, thereby shortening the length of the breeding season and improving the chances of reproductive success. The amount of reserves available will be influenced by body size, the increased energetic and predation costs associated with carrying large stores, distances between staging sites and the location of the breeding grounds within the Arctic. Birds need not fly directly to the breeding grounds from the established temperate staging sites. Extensive feeding by migrants may occur in the Arctic, even within a few kilometres of the breeding sites as the birds track the retreating snowline. Irrespective of their size, birds are thus able to store some resources necessary for egg laying at local or regional scales. It is thus important to make a distinction between local capital and distant capital breeding. The extent to which a bird is characterized as a distant capital, local capital, or an income breeder not only varies between species, but also between individuals and seasons.<br /

    Facing up to the wandering mind: Patterns of off-task laboratory thought are associated with stronger neural recruitment of right fusiform cortex while processing facial stimuli.

    Get PDF
    Human cognition is not always tethered to events in the external world. Laboratory and real world experience sampling studies reveal that attention is often devoted to self-generated mental content rather than to events taking place in the immediate environment. Recent studies have begun to explicitly examine the consistency between states of off-task thought in the laboratory and in daily life, highlighting differences in the psychological correlates of these states across the two contexts. Our study used neuroimaging to further understand the generalizability of off-task thought across laboratory and daily life contexts. We examined (1) whether context (daily life versus laboratory) impacts on individuals' off-task thought patterns and whether individual variations in these patterns are correlated across contexts; (2) whether neural correlates for the patterns of off-task thoughts in the laboratory show similarities with those thoughts in daily life, in particular, whether differences in cortical grey matter associated with detail and off-task thoughts in the para-hippocampus, identified in a prior study on laboratory thoughts, were apparent in real life thought patterns. We also measured neural responses to common real-world stimuli (faces and scenes) and examined how neural responses to these stimuli were related to experiences in the laboratory and in daily life - finding evidence of both similarities and differences. There were consistent patterns of off-task thoughts reported across the two contexts, and both patterns had a commensurate relationship with medial temporal lobe architecture. However, compared to real world off-task thoughts, those in the laboratory focused more on social content and showed a stronger correlation with neural activity when viewing faces compared to scenes. Overall our results show that off-task thought patterns have broad similarities in the laboratory and in daily life, and the apparent differences may be, in part, driven by the richer environmental context in the real world. More generally, our findings are broadly consistent with emerging evidence that shows off-task thoughts emerge through the prioritisation of information that has greater personal relevance than events in the here and now

    Molecular evidence of Rickettsia felis infection in dogs from northern territory, Australia

    Get PDF
    The prevalence of spotted fever group rickettsial infection in dogs from a remote indigenous community in the Northern Territory (NT) was determined using molecular tools. Blood samples collected from 130 dogs in the community of Maningrida were subjected to a spotted fever group (SFG)-specific PCR targeting the ompB gene followed by a Rickettsia felis-specific PCR targeting the gltA gene of R. felis. Rickettsia felis ompB and gltA genes were amplified from the blood of 3 dogs. This study is the first report of R. felis infection in indigenous community dogs in NT

    Effects of regular salt marsh haying on marsh plants, algae, invertebrates and birds at Plum Island Sound, Massachusetts

    Get PDF
    Author Posting. Š The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Wetlands Ecology and Management 17 (2009): 469-487, doi: 10.1007/s11273-008-9125-3.The haying of salt marshes, a traditional activity since colonial times in New England, still occurs in about 400 ha of marsh in the Plum Island Sound estuary in northeastern Massachusetts. We took advantage of this haying activity to investigate how the periodic large-scale removal of aboveground biomass affects a number of marsh processes. Hayed marshes were no different from adjacent reference marshes in plant species density (species per area) and end-of-year aboveground biomass, but did differ in vegetation composition. Spartina patens was more abundant in hayed marshes than S. alterniflora, and the reverse was true in reference marshes. The differences in relative covers of these plant species were not associated with any differences between hayed and reference marshes in the elevations of the marsh platform. Instead it suggested that S. patens was more tolerant of haying than S. alterniflora. S. patens had higher stem densities in hayed marshes than it did in reference marshes, suggesting that periodic cutting stimulated tillering of this species. Although we predicted that haying would stimulate benthic chlorophyll production by opening up the canopy, we found differences to be inconsistent, possibly due to the relatively rapid regrowth of S. patens and to grazing by invertebrates on the algae. The pulmonate snail, Melampus bidendatus was depleted in its δ13C content in the hayed marsh compared to the reference, suggesting a diet shift to benthic algae in hayed marshes. The stable isotope ratios of a number of other consumer species were not affected by haying activity. Migratory shorebirds cue in to recently hayed marshes and may contribute to short term declines in some invertebrate species, however the number of taxa per unit area of marsh surface invertebrates and their overall abundances were unaffected by haying over the long term. Haying had no impact on nutrient concentrations in creeks just downstream from hayed plots, but the sediments of hayed marshes were lower in total N and P compared to references. In sum, haying appeared to affect plant species composition but had only short-term affects on consumer organisms. This contrasts with many grassland ecosystems, where an intermediate level of disturbance, such as by grazing, increases species diversity and may stimulate productivity. From a management perspective, periodic mowing could be a way to maintain S. patens habitats and the suite of species with which they are associated.This research was supported by the Plum Island Ecosystem Long Term Ecological Research program (OCE-972692 and OCE 0423565) of the National Science Foundation (NSF). J. Horowitz and J. Ludlam were supported by NSF Research Experience for Undergraduate (REU) grants when they were students at Hampshire College and Gordon College respectively

    Patterns of ongoing thought in the real world

    Get PDF
    Health and well-being are impacted by our thoughts and the things we do. In the laboratory, studies suggest specific task contexts impact thought processes. More broadly, this suggests the people we are with, the places we are in, and the activities we perform may influence our thought patterns. In our study, participants completed experience sampling surveys for five days in daily life. Principal component analysis decomposed this data to identify common “patterns of thought,” and linear mixed modelling related these patterns to the participants’ activities. Our study replicated the influence of socializing on patterns of thought and established that this is part of a broader set of relationships linking activities to how thoughts are organized in daily life. Our study suggests sampling thinking in the real world may help map thoughts to activities, and these “thought-activity” mappings could be useful to researchers and health care professionals interested in health and well-being

    A transcriptional reference map of defence hormone responses in potato

    Get PDF
    Phytohormones are involved in diverse aspects of plant life including the regulation of plant growth, development and reproduction, as well as governing biotic and abiotic stress responses. We have generated a comprehensive transcriptional reference map of the early potato responses to exogenous application of the defence hormones abscisic acid, brassinolides (applied as epibrassinolide), ethylene (applied as the ethylene precursor aminocyclopropanecarboxylic acid), salicylic acid and jasmonic acid (applied as methyl jasmonate). Of the 39000 predicted genes on the microarray, a total of 2677 and 2473 genes were significantly differentially expressed at 1 h and 6 h after hormone treatment, respectively. Specific marker genes newly identified for the early hormone responses in potato include: a homeodomain 20 transcription factor (DMG400000248) for abscisic acid; a SAUR gene (DMG400016561) induced in epibrassinolide treated plants; an osmotin gene (DMG400003057) specifically enhanced by aminocyclopropanecarboxylic acid; a gene weakly similar to AtWRKY40 (DMG402007388) that was induced by salicylic acid; and a jasmonate ZIM-domain protein 1 (DMG400002930) which was specifically activated by methyl jasmonate. An online database has been set up to query the expression patterns of potato genes represented on the microarray that can also incorporate future microarray or RNAseq-based expression studies
    • …
    corecore