85 research outputs found

    Lysine-specific demethylase 1 promotes brown adipose tissue thermogenesis via repressing glucocorticoid activation

    Get PDF
    Brown adipocytes display phenotypic plasticity, as they can switch between the active states of fatty acid oxidation and energy dissipation versus a more dormant state. Cold exposure or β-adrenergic stimulation favors the active thermogenic state, whereas sympathetic denervation or glucocorticoid administration promotes more lipid accumulation. Our understanding of the molecular mechanisms underlying these switches is incomplete. Here we found that LSD1 (lysine-specific demethylase 1), a histone demethylase, regulates brown adipocyte metabolism in two ways. On the one hand, LSD1 associates with PRDM16 to repress expression of white fat-selective genes. On the other hand, LSD1 represses HSD11B1 (hydroxysteroid 11-β-dehydrogenase isozyme 1), a key glucocorticoid-activating enzyme, independently from PRDM16. Adipose-specific ablation of LSD1 impaired mitochondrial fatty acid oxidation capacity of the brown adipose tissue, reduced whole-body energy expenditure, and increased fat deposition, which can be significantly alleviated by simultaneously deleting HSD11B1. These findings establish a novel regulatory pathway connecting histone modification and hormone activation with mitochondrial oxidative capacity and whole-body energy homeostasis

    Defective NADPH production in mitochondrial disease complex I causes inflammation and cell death

    Full text link
    Electron transport chain (ETC) defects occurring from mitochondrial disease mutations compromise ATP synthesis and render cells vulnerable to nutrient and oxidative stress conditions. This bioenergetic failure is thought to underlie pathologies associated with mitochondrial diseases. However, the precise metabolic processes resulting from a defective mitochondrial ETC that compromise cell viability under stress conditions are not entirely understood. We design a whole genome gain-of-function CRISPR activation screen using human mitochondrial disease complex I (CI) mutant cells to identify genes whose increased function rescue glucose restriction-induced cell death. The top hit of the screen is the cytosolic Malic Enzyme (ME1), that is sufficient to enable survival and proliferation of CI mutant cells under nutrient stress conditions. Unexpectedly, this metabolic rescue is independent of increased ATP synthesis through glycolysis or oxidative phosphorylation, but dependent on ME1-produced NADPH and glutathione (GSH). Survival upon nutrient stress or pentose phosphate pathway (PPP) inhibition depends on compensatory NADPH production through the mitochondrial one-carbon metabolism that is severely compromised in CI mutant cells. Importantly, this defective CI-dependent decrease in mitochondrial NADPH production pathway or genetic ablation of SHMT2 causes strong increases in inflammatory cytokine signatures associated with redox dependent induction of ASK1 and activation of stress kinases p38 and JNK. These studies find that a major defect of CI deficiencies is decreased mitochondrial one-carbon NADPH production that is associated with increased inflammation and cell death.This work was supported by the National Institute of Health, Grants RO1 CA181217 NCI, RO1 GM121452 NIGMS, and NIH 5 R01 DK089883-08 and Department of Defense CDMRP W81XWH-17-1-0216 to P.P. E.B. was supported in part by an EMBO postdoctoral fellowship and MDA Development Grant. E.A.P. was supported by NIHF30 (1F30DE028206-01A1). C.F.B was supported by F32GM125243. S.P.G. was supported by an NIH grant GM6794

    Evaluating Multiplexed Quantitative Phosphopeptide Analysis on a Hybrid Quadrupole Mass Filter/Linear Ion Trap/Orbitrap Mass Spectrometer

    Get PDF
    As a driver for many biological processes, phosphorylation remains an area of intense research interest. Advances in multiplexed quantitation utilizing isobaric tags (e.g., TMT and iTRAQ) have the potential to create a new paradigm in quantitative proteomics. New instrumentation and software are propelling these multiplexed workflows forward, which results in more accurate, sensitive, and reproducible quantitation across tens of thousands of phosphopeptides. This study assesses the performance of multiplexed quantitative phosphoproteomics on the Orbitrap Fusion mass spectrometer. Utilizing a two-phosphoproteome model of precursor ion interference, we assessed the accuracy of phosphopeptide quantitation across a variety of experimental approaches. These methods included the use of synchronous precursor selection (SPS) to enhance TMT reporter ion intensity and accuracy. We found that (i) ratio distortion remained a problem for phosphopeptide analysis in multiplexed quantitative workflows, (ii) ratio distortion can be overcome by the use of an SPS-MS3 scan, (iii) interfering ions generally possessed a different charge state than the target precursor, and (iv) selecting only the phosphate neutral loss peak (single notch) for the MS3 scan still provided accurate ratio measurements. Remarkably, these data suggest that the underlying cause of interference may not be due to coeluting and cofragmented peptides but instead from consistent, low level background fragmentation. Finally, as a proof-of-concept 10-plex experiment, we compared phosphopeptide levels from five murine brains to five livers. In total, the SPS-MS3 method quantified 38 247 phosphopeptides, corresponding to 11 000 phosphorylation sites. With 10 measurements recorded for each phosphopeptide, this equates to more than 628 000 binary comparisons collected in less than 48 h

    Apolipoprotein E is a pancreatic extracellular factor that maintains mature β-cell gene expression.

    Get PDF
    The in vivo microenvironment of tissues provides myriad unique signals to cells. Thus, following isolation, many cell types change in culture, often preserving some but not all of their in vivo characteristics in culture. At least some of the in vivo microenvironment may be mimicked by providing specific cues to cultured cells. Here, we show that after isolation and during maintenance in culture, adherent rat islets reduce expression of key β-cell transcription factors necessary for β-cell function and that soluble pancreatic decellularized matrix (DCM) can enhance β-cell gene expression. Following chromatographic fractionation of pancreatic DCM, we performed proteomics to identify soluble factors that can maintain β-cell stability and function. We identified Apolipoprotein E (ApoE) as an extracellular protein that significantly increased the expression of key β-cell genes. The ApoE effect on beta cells was mediated at least in part through the JAK/STAT signaling pathway. Together, these results reveal a role for ApoE as an extracellular factor that can maintain the mature β-cell gene expression profile

    eIF1A augments Ago2-mediated Dicer-independent miRNA biogenesis and RNA interference

    Get PDF
    MicroRNA (miRNA) biogenesis and miRNA-guided RNA interference (RNAi) are essential for gene expression in eukaryotes. Here we report that translation initiation factor eIF1A directly interacts with Ago2 and promotes Ago2 activities in RNAi and miR-451 biogenesis. Biochemical and NMR analyses demonstrate that eIF1A binds to the MID-domain of Ago2 and this interaction does not impair translation initiation. Alanine mutation of the Ago2-facing Lys56 in eIF1A impairs RNAi activities in human cells and zebrafish. The eIF1A-Ago2 assembly facilitates Dicer-independent biogenesis of miR-451, which mediates erythrocyte maturation. Human eIF1A (heIF1A), but not heIF1A(K56A), rescues the erythrocyte maturation delay in eif1axb knockdown zebrafish. Consistently, miR-451 partly compensates erythrocyte maturation defects in zebrafish with eif1axb knockdown and eIF1A(K56A) expression, supporting a role of eIF1A in miRNA-451 biogenesis in this model. Our results suggest that eIF1A is a novel component of the Ago2-centered RNA induced silencing complexes (RISCs) and augments Ago2-dependent RNAi and miRNA biogenesis
    corecore