141 research outputs found
A Quality Model for Actionable Analytics in Rapid Software Development
Background: Accessing relevant data on the product, process, and usage
perspectives of software as well as integrating and analyzing such data is
crucial for getting reliable and timely actionable insights aimed at
continuously managing software quality in Rapid Software Development (RSD). In
this context, several software analytics tools have been developed in recent
years. However, there is a lack of explainable software analytics that software
practitioners trust. Aims: We aimed at creating a quality model (called
Q-Rapids quality model) for actionable analytics in RSD, implementing it, and
evaluating its understandability and relevance. Method: We performed workshops
at four companies in order to determine relevant metrics as well as product and
process factors. We also elicited how these metrics and factors are used and
interpreted by practitioners when making decisions in RSD. We specified the
Q-Rapids quality model by comparing and integrating the results of the four
workshops. Then we implemented the Q-Rapids tool to support the usage of the
Q-Rapids quality model as well as the gathering, integration, and analysis of
the required data. Afterwards we installed the Q-Rapids tool in the four
companies and performed semi-structured interviews with eight product owners to
evaluate the understandability and relevance of the Q-Rapids quality model.
Results: The participants of the evaluation perceived the metrics as well as
the product and process factors of the Q-Rapids quality model as
understandable. Also, they considered the Q-Rapids quality model relevant for
identifying product and process deficiencies (e.g., blocking code situations).
Conclusions: By means of heterogeneous data sources, the Q-Rapids quality model
enables detecting problems that take more time to find manually and adds
transparency among the perspectives of system, process, and usage.Comment: This is an Author's Accepted Manuscript of a paper to be published by
IEEE in the 44th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA) 2018. The final authenticated version will be available
onlin
Reporting experiments to satisfy professionals information needs
Although the aim of empirical software engineering is to provide evidence for selecting the appropriate technology, it appears that there is a lack of recognition of this work in industry. Results from empirical research only rarely seem to find their way to company decision makers. If information relevant for software managers is provided in reports on experiments, such reports can be considered as a source of information for them when they are faced with making decisions about the selection of software engineering technologies. To bridge this communication gap between researchers and professionals, we propose characterizing the information needs of software managers in order to show empirical software engineering researchers which information is relevant for decision-making and thus enable them to make this information available. We empirically investigated decision makers? information needs to identify which information they need to judge the appropriateness and impact of a software technology. We empirically developed a model that characterizes these needs. To ensure that researchers provide relevant information when reporting results from experiments, we extended existing reporting guidelines accordingly.We performed an experiment to evaluate our model with regard to its effectiveness. Software managers who read an experiment report according to the proposed model judged the technology?s appropriateness significantly better than those reading a report about the same experiment that did not explicitly address their information needs. Our research shows that information regarding a technology, the context in which it is supposed to work, and most importantly, the impact of this technology on development costs and schedule as well as on product quality is crucial for decision makers
Singuläres Erbe : die archivalischen Hinterlassenschaften der Staatssicherheit
Die archivalischen Hinterlassenschaften der Staatssicherheit
Singuläres Erbe. Die archivalischen Hinterlassenschaften der Staatssicherheit
Die archivalischen Hinterlassenschaften der Staatssicherheit
Towards Automated Data Integration in Software Analytics
Software organizations want to be able to base their decisions on the latest
set of available data and the real-time analytics derived from them. In order
to support "real-time enterprise" for software organizations and provide
information transparency for diverse stakeholders, we integrate heterogeneous
data sources about software analytics, such as static code analysis, testing
results, issue tracking systems, network monitoring systems, etc. To deal with
the heterogeneity of the underlying data sources, we follow an ontology-based
data integration approach in this paper and define an ontology that captures
the semantics of relevant data for software analytics. Furthermore, we focus on
the integration of such data sources by proposing two approaches: a static and
a dynamic one. We first discuss the current static approach with a predefined
set of analytic views representing software quality factors and further
envision how this process could be automated in order to dynamically build
custom user analysis using a semi-automatic platform for managing the lifecycle
of analytics infrastructures.Comment: This is an author's accepted manuscript of a paper to be published by
ACM in the 12th International Workshop on Real-Time Business Intelligence and
Analytics (BIRTE@VLDB) 2018. The final authenticated version will be
available through https://doi.org/10.1145/3242153.324215
A quality model for actionable analytics in rapid software development
Accessing relevant data on the product, process, and usage perspectives of software as well as integrating and analyzing such data is crucial for getting reliable and timely actionable insights aimed at continuously managing software quality in Rapid Software Development (RSD). In this context, several software analytics tools have been developed in recent years. However, there is a lack of explainable software analytics that software practitioners trust. Aims: We aimed at creating a quality model (called Q-Rapids quality model) for actionable analytics in RSD, implementing it, and evaluating its understandability and relevance. Method: We performed workshops at four companies in order to determine relevant metrics as well as product and process factors. We also elicited how these metrics and factors are used and interpreted by practitioners when making decisions in RSD. We specified the Q-Rapids quality model by comparing and integrating the results of the four workshops. Then we implemented the Q-Rapids tool to support the usage of the Q-Rapids quality model as well as the gathering, integration, and analysis of the required data. Afterwards we installed the Q-Rapids tool in the four companies and performed semi-structured interviews with eight product owners to evaluate the understandability and relevance of the Q-Rapids quality model. Results: The participants of the evaluation perceived the metrics as well as the product and process factors of the Q-Rapids quality model as understandable. Also, they considered the Q-Rapids quality model relevant for identifying product and process deficiencies (e.g., blocking code situations). Conclusions: By means of heterogeneous data sources, the Q-Rapids quality model enables detecting problems that take more time to find manually and adds transparency among the perspectives of system, process, and usage.Peer ReviewedPostprint (author's final draft
Towards automated data integration in software analytics
Software organizations want to be able to base their decisions on the latest set of available data and the real-time analytics derived from them. In order to support "real-time enterprise" for software organizations and provide information transparency for diverse stakeholders, we integrate heterogeneous data sources about software analytics, such as static code analysis, testing results, issue tracking systems, network monitoring systems, etc. To deal with the heterogeneity of the underlying data sources, we follow an ontology-based data integration approach in this paper and define an ontology that captures the semantics of relevant data for software analytics. Furthermore, we focus on the integration of such data sources by proposing two approaches: a static and a dynamic one. We first discuss the current static approach with a predefined set of analytic views representing software quality factors and further envision how this process could be automated in order to dynamically build custom user analysis using a semi-automatic platform for managing the lifecycle of analytics infrastructures.Peer ReviewedPostprint (author's final draft
Quality-aware architectural model transformations in adaptive mashups user interfaces
The final publication is available at IOS Press through http://dx.doi.org/10.3233/FI-2016-0000Mashup user interfaces provides their functionality through the combination of different services. The integration of such services can be solved by using reusable and third-party components. Furthermore, these interfaces must be adapted to user preferences, context changes, user interactions and component availability. Model transformation is a useful mechanism to address this adaptation but normally these operations only focus on the functional requirements.
In this sense, quality attributes should be included in the adaptation process to obtain the best adapted mashup user interface. This paper proposes a generic quality-aware transformation process to support the adaptation of software architectures. The transformation process has been applied in ENIA, a geographic information system, by constructing a specific quality model for the adaptation of mashup user interfaces. This model is taken into account for evaluating the different transformation alternatives and choosing the one that maximizes the quality assessments.
The approach has been validated by a set of adaptation scenarios that are intended to maximize different quality factors and therefore apply distinct combinations of metrics.Peer ReviewedPostprint (author's final draft
- …