8 research outputs found

    Evidence for Suzuki–Miyaura cross-couplings catalyzed by ligated Pd3-clusters: from cradle to grave

    Get PDF
    Pdn clusters offer unique selectivity and exploitable reactivity in catalysis. Understanding the behavior of Pdn clusters is thus critical for catalysis, applied synthetic organic chemistry and greener outcomes for precious Pd. The Pd3 cluster, [Pd3(μ-Cl)(μ-PPh2)2(PPh3)3][Cl] (denoted as Pd3Cl2), which exhibits distinctive reactivity, was synthesized and immobilized on a phosphine-functionalized polystyrene resin (denoted as immob-Pd3Cl2). The resultant material served as a tool to study closely the role of Pd3 clusters in a prototypical Suzuki–Miyaura cross-coupling of 4-fluoro-1-bromobenzene and 4-methoxyphenyl boronic acid at varying low Pd ppm concentrations (24, 45, and 68 ppm). Advanced heterogeneity tests such as Hg poisoning and the three-phase test showed that leached mononuclear or nanoparticulate Pd are unlikely to be the major active catalyst species under the reaction conditions tested. EXAFS/XANES analysis from (pre)catalyst and filtered catalysts during and after catalysis has shown the intactness of the triangular structure of the Pd3X2 cluster, with exchange of chloride (X) by bromide during catalytic turnover of bromoarene substrate. This finding is further corroborated by treatment of immob-Pd3Cl2 after catalyzing the Suzuki–Miyaura reaction with excess PPh3, which releases the cluster from the polymer support and so permits direct observation of [Pd3(μ-Br)(μ-PPh2)2(PPh3)3]+ ions by ESI-MS. No evidence is seen for a proposed intermediate in which the bridging halogen on the Pd3 motif is replaced by an aryl group from the organoboronic acid, i.e. formed by a transmetallation-first process. Our findings taken together indicate that the ‘Pd3X2’ motif is an active catalyst species, which is stabilized by being immobilized, providing a more robust Pd3 cluster catalyst system. Non-immobilized Pd3Cl2 is less stable, as is followed by stepwise XAFS of the non-immobilized Pd3Cl2, which gradually changes to a species consistent with ‘Pdx(PPh3)y’ type material. Our findings have far-reaching future implications for Pd3 cluster involvement in catalysis, showing that immobilization of Pd3 cluster species offers advantages for rigorous mechanistic examination and applied chemistries

    Evidence for Suzuki–Miyaura cross-couplings catalyzed by ligated Pd3-clusters : from cradle to grave

    Get PDF
    Pdn clusters offer unique selectivity and exploitable reactivity in catalysis. Understanding the behavior of Pdn clusters is thus critical for catalysis, applied synthetic organic chemistry and greener outcomes for precious Pd. The Pd3 cluster, [Pd3(µ-Cl)(µ-PPh2)2(PPh3)3][Cl] (denoted as Pd3Cl2), which exhibits distinctive reactivity, was synthesized and immobilized on a phosphine-functionalized polystyrene resin (denoted as immob-Pd3Cl2). The resultant material served as a tool to study closely the role of Pd3 clusters in a prototypical Suzuki–Miyaura cross-coupling of 4-fluoro-1-bromobenzene and 4-methoxyphenyl boronic acid at varying low Pd ppm concentrations (24, 45, and 68 ppm). Advanced heterogeneity tests such as Hg poisoning and the three-phase test showed that leached mononuclear or nanoparticulate Pd are unlikely to be the major active catalyst species under the reaction conditions tested. EXAFS/XANES analysis from (pre)catalyst and filtered catalysts during and after catalysis has shown the intactness of the triangular structure of the Pd3X2 cluster, with exchange of chloride (X) by bromide during catalytic turnover of bromoarene substrate. This finding is further corroborated by treatment of immob-Pd3Cl2 after catalyzing the Suzuki–Miyaura reaction with excess PPh3, which releases the cluster from the polymer support and so permits direct observation of [Pd3(µ-Br)(µ-PPh2)2(PPh3)3]+ ions by ESI-MS. No evidence is seen for a proposed intermediate in which the bridging halogen on the Pd3 motif is replaced by an aryl group from the organoboronic acid, i.e. formed by a transmetallation-first process. Our findings taken together indicate that the ‘Pd3X2’ motif is an active catalyst species, which is stabilized by being immobilized, providing a more robust Pd3 cluster catalyst system. Non-immobilized Pd3Cl2 is less stable, as is followed by stepwise XAFS of the non-immobilized Pd3Cl2, which gradually changes to a species consistent with ‘Pdx(PPh3)y’ type material. Our findings have far-reaching future implications for Pd3 cluster involvement in catalysis, showing that immobilization of Pd3 cluster species offers advantages for rigorous mechanistic examination and applied chemistries

    A Dichotomy in Cross-Coupling Site Selectivity in a Dihalogenated Heteroarene: Influence of Mononuclear Pd, Pd Clusters, and Pd Nanoparticles—the Case for Exploiting Pd Catalyst Speciation

    Get PDF
    Site-selective dihalogenated heteroarene cross-coupling with organometallic reagents usually occurs at the halogen proximal to the heteroatom, enabled by intrinsic relative electrophilicity, particularly in strongly polarized systems. An archetypical example is the Suzuki–Miyaura cross-coupling (SMCC) of 2,4-dibromopyridine with organoboron species, which typically exhibit C2-arylation site-selectivity using mononuclear Pd (pre)catalysts. Given that Pd speciation, particularly aggregation, is known to lead to the formation of catalytically competent multinuclear Pdn species, the influence of these species on cross-coupling site-selectivity remains largely unknown. Herein, we disclose that multinuclear Pd species, in the form of Pd3-type clusters and nanoparticles, switch arylation site-selectivity from C2 to C4, in 2,4-dibromopyridine cross-couplings with both organoboronic acids (SMCC reactions) and Grignard reagents (Kumada-type reactions). The Pd/ligand ratio and the presence of suitable stabilizing salts were found to be critically important in switching the site-selectivity. More generally, this study provides experimental evidence that aggregated Pd catalyst species not only are catalytically competent but also alter reaction outcomes through changes in product selectivity

    Copper Nanoparticles Supported on Agarose as a Bioorganic and Degradable Polymer for Multicomponent Click Synthesis of 1,2,3-Triazoles under Low Copper Loading in Water

    No full text
    Agarose-supported copper nanoparticles (CuNPs@agarose) were prepared by immobilization of copper bromide on agarose followed by in situ chemical reduction. The new material was characterized by SEM, EDX, TEM, TGA, XRD, nitrogen adsorption–desorption, and solid UV–vis analysis. The catalytic activity of CuNPs@agarose was assessed in the three component click synthesis of 1,2,3-triazoles in water under low catalyst loading and mild reaction conditions. The easy synthesis and air-stable catalyst was recycled for five runs with small drops in catalytic activity

    Well-Defined Pdn Clusters for Cross–Coupling and Hydrogenation Catalysis : New Opportunities for Catalyst Design

    Get PDF
    In recent studies it has been demonstrated that the privileged reactivity of higher order metal clusters can be exploited in widely applied catalytic processes, particularly cross-coupling reactions and hydrogenative transformations. Relatively small, well-defined Pdn clusters have been known since the 1960s. Unique reactivity, reaction (product) selectivity and catalyst behavior has been recently uncovered, from which there is much potential in catalyst design and application. Ligated Pdn clusters of a smaller size (where n is less than 6), may form upon degradation of mononuclear Pd species en route to larger particulate Pd (from 1 micrometer range). This review presents the catalytic applications of Pdn clusters. We pay particular attention to the underlying structure of the Pdn clusters, linked to their reactivity. A hypothesis that ligated Pdn clusters may constitute a mechanism by which higher order Pd species may form (as a bridging point for mono-ligated Pd species through to PdNPs) is further discussed. Where appropriate, we mention other catalytic reaction processes that complement the discussion focused on cross-coupling and hydrogenation processes

    Bridging the Gap from Mononuclear PdIIPrecatalysts to Pd Nanoparticles : Identification of Intermediate Linear [Pd3(XPh3)4]2+Clusters as Catalytic Species for Suzuki-Miyaura Couplings (X = P, As)

    No full text
    Tripalladium clusters of the type [Pd3(PPh3)4]2+, wherein three linearly connected Pd atoms are stabilized by phosphine and arsine ligands, have been detected and isolated as intermediates during the reduction of well-defined mononuclear [Pd(OTf)2(XPh3)2] (X = P and X = As, respectively) to Pd nanoparticles (PdNPs). The isolated [Pd3(PPh3)4]2+ cluster isomerizes on broad-band UV irradiation to form an unexpected photoisomer, produced by a remarkable change in conformation at one of the bridging PPh3 ligands. A catalytic role for these [Pd3(XPh3)4]2+ species is exemplified in Suzuki-Miyaura cross-coupling (SMCC) reactions, with high activity seen in the arylation of a brominated heterocyclic 2-pyrone. Use of the [Pd3(PPh3)4]2+ cluster enables a switch in site selectivity for SMCC reactions involving 2,4-dibromopyridine from the typical C2-bromide site (seen previously for mononuclear Pd catalysts) to the atypical C4-bromide site, thereby mirroring recently reported cyclic Pd3 clusters and PdNPs. We have further determined that the thermal isomer and photoisomer of [Pd3(PPh3)4]2+ are similarly catalytically active in the Pd-catalyzed hydrogenation of phenylacetylene to give styrene. Our findings link the evolution of mononuclear Pd(II) salts to PdNPs via the intermediacy of linear [Pd3(XPh3)4]2+ clusters
    corecore