76 research outputs found

    Exploring the functional space of thiiranes as gelatinase inhibitors using click chemistry

    Get PDF
    A series of 4-[(triazolyl)methoxy]phenyl analogs of the phenoxyphenyl-substituted thiirane SB-3CT 1 was evaluated for its ability to inhibit gelatinases, members of the matrix metalloproteinase family of enzymes. The triazole segment of these inhibitors was assembled using the Meldal-Sharpless copper-catalyzed Huisgen dipolar cycloaddition of an azide and a terminal alkyne. While these triazole derivatives possessed fair activity as gelatinase inhibitors, an intermediate used in the dipolar cycloaddition, 4-(propargyloxy)phenyl derivative 2, showed very good activity (<50% inhibitory activity following a 3 h pre-incubation of 2 at a concentration of 3 μM) as an inhibitor of human matrix metalloproteinase-2.Fil: Testero, Sebastian Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; ArgentinaFil: Llarrull, Leticia Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Fisher, Jed F.. University of Notre Dame; Estados UnidosFil: Chang, Mayland. University of Notre Dame; Estados UnidosFil: Mobashery, Shahriar. University of Notre Dame; Estados Unido

    How Allosteric Control of Staphylococcus aureus Penicillin-Binding Protein 2a Enables Methicillin-Resistance and Physiological Function

    Get PDF
    The expression of penicillin binding protein 2a (PBP2a) is the basis for the broad clinical resistance to the β-lactam antibiotics by methicillin-resistant Staphylococcus aureus (MRSA). The highmolecular mass penicillin binding proteins of bacteria catalyze in separate domains the transglycosylase and transpeptidase activities required for the biosynthesis of the peptidoglycan polymer that comprises the bacterial cell wall. In bacteria susceptible to β-lactam antibiotics, the transpeptidase activity of their penicillin binding proteins (PBPs) is lost as a result of irreversible acylation of an active site serine by the β-lactam antibiotics. In contrast, the PBP2a of MRSA is resistant to β-lactam acylation and successfully catalyzes the DD-transpeptidation reaction necessary to complete the cell wall. The inability to contain MRSA infection with β-lactam antibiotics is a continuing public health concern. We report herein the identification of an allosteric binding domain - a remarkable 60 Å distant from the DD-transpeptidase active site - discovered by crystallographic analysis of a soluble construct of PBP2a. When this allosteric site is occupied, a multiresidue conformational change culminates in the opening of the active site to permit substrate entry. This same crystallographic analysis also reveals the identity of three allosteric ligands: muramic acid (a saccharide component of the peptidoglycan), the cell wall peptidoglycan, and ceftaroline, a recently approved anti-MRSA β-lactam antibiotic. The ability of an anti-MRSA β-lactam antibiotic to stimulate allosteric opening of the active site, thus predisposing PBP2a to inactivation by a second β-lactam molecule, opens an unprecedented realm for β-lactam antibiotic structure-based design.Fil: Otero, Lisandro Horacio. Consejo Superior de Investigaciones Científicas. Instituto de Química Física; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Rojas Altuve, Alzoray. Consejo Superior de Investigaciones Científicas. Instituto de Química Física; EspañaFil: Llarrull, Leticia Irene. University of Notre Dame; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Carrasco López, Cesar. Consejo Superior de Investigaciones Científicas. Instituto de Química Física; EspañaFil: Kumarasiri, Malika. University of Notre Dame; Estados UnidosFil: Lastochkin, Elena. University of Notre Dame; Estados UnidosFil: Fishovitz, Jennifer. University of Notre Dame; Estados UnidosFil: Dawley, Matthew. University of Notre Dame; Estados UnidosFil: Hesek, Dusan. University of Notre Dame; Estados UnidosFil: Lee, Mijoon. University of Notre Dame; Estados UnidosFil: Johnson, Jarrod W.. University of Notre Dame; Estados UnidosFil: Fisher, Jed F.. University of Notre Dame; Estados UnidosFil: Chang, Mayland. University of Notre Dame; Estados UnidosFil: Mobashery, Shahriar. University of Notre Dame; Estados UnidosFil: Hermoso, Juan A.. Consejo Superior de Investigaciones Científicas. Instituto de Química Física; Españ

    Global Patterns of Bacterial Beta-Diversity in Seafloor and Seawater Ecosystems

    Get PDF
    Background Marine microbial communities have been essential contributors to global biomass, nutrient cycling, and biodiversity since the early history of Earth, but so far their community distribution patterns remain unknown in most marine ecosystems. Methodology/Principal Findings The synthesis of 9.6 million bacterial V6-rRNA amplicons for 509 samples that span the global ocean's surface to the deep-sea floor shows that pelagic and benthic communities greatly differ, at all taxonomic levels, and share <10% bacterial types defined at 3% sequence similarity level. Surface and deep water, coastal and open ocean, and anoxic and oxic ecosystems host distinct communities that reflect productivity, land influences and other environmental constraints such as oxygen availability. The high variability of bacterial community composition specific to vent and coastal ecosystems reflects the heterogeneity and dynamic nature of these habitats. Both pelagic and benthic bacterial community distributions correlate with surface water productivity, reflecting the coupling between both realms by particle export. Also, differences in physical mixing may play a fundamental role in the distribution patterns of marine bacteria, as benthic communities showed a higher dissimilarity with increasing distance than pelagic communities. Conclusions/Significance This first synthesis of global bacterial distribution across different ecosystems of the World's oceans shows remarkable horizontal and vertical large-scale patterns in bacterial communities. This opens interesting perspectives for the definition of biogeographical biomes for bacteria of ocean waters and the seabed

    PANC Study (Pancreatitis: A National Cohort Study): national cohort study examining the first 30 days from presentation of acute pancreatitis in the UK

    Get PDF
    Abstract Background Acute pancreatitis is a common, yet complex, emergency surgical presentation. Multiple guidelines exist and management can vary significantly. The aim of this first UK, multicentre, prospective cohort study was to assess the variation in management of acute pancreatitis to guide resource planning and optimize treatment. Methods All patients aged greater than or equal to 18 years presenting with acute pancreatitis, as per the Atlanta criteria, from March to April 2021 were eligible for inclusion and followed up for 30 days. Anonymized data were uploaded to a secure electronic database in line with local governance approvals. Results A total of 113 hospitals contributed data on 2580 patients, with an equal sex distribution and a mean age of 57 years. The aetiology was gallstones in 50.6 per cent, with idiopathic the next most common (22.4 per cent). In addition to the 7.6 per cent with a diagnosis of chronic pancreatitis, 20.1 per cent of patients had a previous episode of acute pancreatitis. One in 20 patients were classed as having severe pancreatitis, as per the Atlanta criteria. The overall mortality rate was 2.3 per cent at 30 days, but rose to one in three in the severe group. Predictors of death included male sex, increased age, and frailty; previous acute pancreatitis and gallstones as aetiologies were protective. Smoking status and body mass index did not affect death. Conclusion Most patients presenting with acute pancreatitis have a mild, self-limiting disease. Rates of patients with idiopathic pancreatitis are high. Recurrent attacks of pancreatitis are common, but are likely to have reduced risk of death on subsequent admissions. </jats:sec

    β-Lactams from the Ocean

    No full text
    The title of this essay is as much a question as it is a statement. The discovery of the β-lactam antibiotics—including penicillins, cephalosporins, and carbapenems—as largely (if not exclusively) secondary metabolites of terrestrial fungi and bacteria, transformed modern medicine. The antibiotic β-lactams inactivate essential enzymes of bacterial cell-wall biosynthesis. Moreover, the ability of the β-lactams to function as enzyme inhibitors is of such great medical value, that inhibitors of the enzymes which degrade hydrolytically the β-lactams, the β-lactamases, have equal value. Given this privileged status for the β-lactam ring, it is therefore a disappointment that the exemplification of this ring in marine secondary metabolites is sparse. It may be that biologically active marine β-lactams are there, and simply have yet to be encountered. In this report, we posit a second explanation: that the value of the β-lactam to secure an ecological advantage in the marine environment might be compromised by its close structural similarity to the β-lactones of quorum sensing. The steric and reactivity similarities between the β-lactams and the β-lactones represent an outside-of-the-box opportunity for correlating new structures and new enzyme targets for the discovery of compelling biological activities

    The future of the β-lactams

    Get PDF
    In the 80 years since their discovery the β-lactam antibiotics have progressed through structural generations, each in response to the progressive evolution of bacterial resistance mechanisms. The generational progression was driven by the ingenious, but largely empirical, manipulation of structure by medicinal chemists. Nonetheless, the true creative force in these efforts was Nature, and as the discovery of new β-lactams from Nature has atrophied while at the same time multi-resistant and opportunistic bacterial pathogens have burgeoned, the time for empirical drug discovery has passed. We concisely summarize recent developments with respect to bacterial resistance, the identity of the new β-lactams, and the emerging non-empirical strategies that will ensure that this incredible class of antibiotics has a future.Fil: Llarrull, Leticia Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina. University of Notre Dame; Estados UnidosFil: Testero, Sebastian Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina. University of Notre Dame; Estados UnidosFil: Fisher, Jed F.. University of Notre Dame; Estados UnidosFil: Mobashery, Shahriar. University of Notre Dame; Estados Unido
    • …
    corecore