180 research outputs found
Foreword
This work reports on the performances of ohmic contacts fabricated on highly p-type doped 4H-SiC epitaxial layer selectively grown by vapor-liquid-solid transport. Due to the very high doping level obtained, the contacts have an ohmic behavior even without any annealing process. Upon variation of annealing temperatures, it was shown that both 500 and 800 °C annealing temperature lead to a minimum value of the Specific Contact Resistance (SCR) down to 1.3×10−6 Ω⋅cm2. However, a large variation of the minimum SCR values has been observed (up to 4×10−4 Ω⋅cm2). Possible sources of this fluctuation have been also discussed in this paper
Thermo-physical properties of paraffin wax with iron oxide nanoparticles as phase change material for heat storage applications
Phase change materials (PCMs) are growing in importance in many thermal applications as heat storage or to smooth the energy peak demand in many technological fields in industrial as well as in civil applications. Conductive nanoparticles can be added to phase change material to improve their thermo-physical properties. In this work, Iron oxide nanoparticles (IOx-NPs) were synthesized using a simple and green synthesis method, free of toxic and harmful solvents, using the extract of a plant as a reducer and stabilizer at two different temperatures of calcination 500°C and 750°C. The metallic oxide was used as an additive with 2% wt. compositions to paraffin wax to prepare a nanocomposite. The variation in thermal properties of paraffin wax in the composite was experimentally investigated. The biosynthesized IOx-NPs were characterized by X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope (SEM) and Thermal Gravimetric Analysis (TGA) techniques. The thermal properties of the synthesized nanocomposites were characterized by a thermal conductivity analyzer and differential scanning calorimetry (DSC). The FTIR spectra showed a bond at 535 cm-1, which confirms the Fe-O vibration. The XRD powder analysis revealed the formation of the cubic phase of Fe3O4 with an average particle size of 11 nm at 500°C and the presence of the phase α-Fe2O3 with Fe3O4 at 750°C. Scanning Electron Microscopy (SEM) showed that the obtained oxide was made up of particles of nanoscale size. Experimental measurements showed that the presence of nanoparticles can improve the latent heat capacity by a maximum of 16.16 % and the thermal conductivity of the nanocomposites by a maximum of 16.99%
A First Comparison of the responses of a He4-based fast-neutron detector and a NE-213 liquid-scintillator reference detector
A first comparison has been made between the pulse-shape discrimination
characteristics of a novel He-based pressurized scintillation detector
and a NE-213 liquid-scintillator reference detector using an Am/Be mixed-field
neutron and gamma-ray source and a high-resolution scintillation-pulse
digitizer. In particular, the capabilities of the two fast neutron detectors to
discriminate between neutrons and gamma-rays were investigated. The NE-213
liquid-scintillator reference cell produced a wide range of scintillation-light
yields in response to the gamma-ray field of the source. In stark contrast, due
to the size and pressure of the He gas volume, the He-based
detector registered a maximum scintillation-light yield of 750~keV to
the same gamma-ray field. Pulse-shape discrimination for particles with
scintillation-light yields of more than 750~keV was excellent in the
case of the He-based detector. Above 750~keV its signal was
unambiguously neutron, enabling particle identification based entirely upon the
amount of scintillation light produced.Comment: 23 pages, 7 figures, Nuclear Instruments and Methods in Physics
Research Section A review addresse
New Measurement of Compton Scattering from the Deuteron and an Improved Extraction of the Neutron Electromagnetic Polarizabilities
The electromagnetic polarizabilities of the nucleon are fundamental
properties that describe its response to external electric and magnetic fields.
They can be extracted from Compton-scattering data --- and have been, with good
accuracy, in the case of the proton. In contradistinction, information for the
neutron requires the use of Compton scattering from nuclear targets. Here we
report a new measurement of elastic photon scattering from deuterium using
quasimonoenergetic tagged photons at the MAX IV Laboratory in Lund, Sweden.
These first new data in more than a decade effectively double the world
dataset. Their energy range overlaps with previous experiments and extends it
by 20 MeV to higher energies. An analysis using Chiral Effective Field Theory
with dynamical \Delta(1232) degrees of freedom shows the data are consistent
with and within the world dataset. After demonstrating that the fit is
consistent with the Baldin sum rule, extracting values for the isoscalar
nucleon polarizabilities and combining them with a recent result for the
proton, we obtain the neutron polarizabilities as \alpha_n = [11.55 +/-
1.25(stat) +/- 0.2(BSR) +/- 0.8(th)] X 10^{-4} fm^3 and \beta_n = [3.65 -/+
1.25(stat) +/- 0.2(BSR) -/+ 0.8(th)] X 10^{-4} fm3, with \chi^2 = 45.2 for 44
degrees of freedom.Comment: 6 pages, 3 figures, comments from Physical Review Letters Referees
addresse
Programming Integrated Surgical Operations and Preventive Maintenance Activities
Part 2: Knowledge-Based ServicesInternational audienceThe operating theatre (OT) represents a significant component of the technical means centre. This facility is the largest cost and revenue centre. To be efficient, it needs an optimal operational pro- gramme, which takes into account maintenance activi- ties and not only surgical operations. To build such a programme, various methods have been used: mixed integer programming (MIP), three classic heuristics for Bin-Packing and a coupling of the first alterna- tive with a stochastic descent (SD). Then we compare the obtained results from generated data
- …